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ABSTRACT 
 

IMPACT OF LUMINANCE AND SPATIAL PARAMETERS ON THE GENERATION 

OF THE HUMAN PATTERN ELECTRORETINOGRAM 

Kate Godwin 
 

June 22, 2015 
 

The current project assessed some of the key hypotheses behind the generation of 

the pattern electroretinogram (PERG) response. The first of these hypotheses states that 

the PERG response is the result of linear cancellation of simultaneous increment and 

decrement retinal responses, as generated by the retinal ON- and OFF-pathways. To test 

this theory, Experiment 1 evaluated the possibility of simulating the PERG by summing 

the ERG responses elicited by increment and decrement flashes. Results from this 

experiment showed that it was indeed possible to simulate the PERG from these flash 

responses, but that a single set of modeling parameters was only sufficient for simulating 

the steady-state PERG response.  

The second hypothesis evaluated a theory that the retinal ganglion cells (RGCs) 

which generate the PERG response should be sensitive to spatial scaling of the PERG 

stimulus, and that an optimal spatial stimulus can be constructed based on the density of 

RGCs as a function of eccentricity. Experiment 2 assessed the validity of this claim by 

comparing the spatial tuning seen from uniform checkerboard stimuli to gratings that 

were spatially scaled to mimic the continuous change RGC receptive field size. Although 

spatial tuning was found in response to uniform checkerboard stimuli, it was not found in 
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response to scaled grating stimuli. It appeared that luminance-based components of the 

PERG response may be driving the spatial tuning observed based on which PERG 

components showed this pattern.  

Finally, the third experiment tested the validity of the results from Experiment 1 

in a population of glaucoma patients. Both the N95 and steady-state amplitudes from 

simulations could be modeled in both patients and age-similar controls. While the PERG 

response and the simulated PERG both appear to track perimetric data, the sample size in 

the present study is likely too small to address the predictive validity of the PERG 

modeling as a tool for tracking disease progression. Based on the findings across these 

three experiments, it is clear that the components which contribute to the generation of 

the PERG are more complex than previously thought, and future studies will be required 

to further elucidate these mechanisms.  
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CHAPTER I 

INTRODUCTION 

Overview of Retinal Physiology 

When light enters the eye, it first traverses various layers of ocular media and then 

falls on a layer of nerve tissue in the back of the eye known as the retina. The most distal 

layer of the retina is the retinal pigment epithelium (RPE), which primarily serves to 

supply nutrients to other retinal cells and absorb stray light that is not captured by the 

outer segments of the photoreceptors. Following the RPE is the photoreceptor layer, 

Figure 1. Layers of the Retina. The retina is composed of numerous layers (listed on the 
left side of the figure), with each nuclear layer consisting of cell bodies (listed on the right 
side of the figure) and each plexiform layer consisting of connections between cells of the 
surrounding nuclear layers. A further discussion of the processes that take place in each 
layer is described in the text. Modified from http://webvision.med.utah.edu. 

Distal 

Proximal 
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which contains the outer segments of the rods and cones. Beyond the photoreceptor layer 

lies the five main layers (see Figure 1) which are as follows, in order from most distal to 

most proximal: outer nuclear layer (ONL), outer plexiform layer (OPL), inner nuclear 

layer (INL), inner plexiform layer (IPL), and retinal ganglion cell layer (RGCL). The 

RGCL and each of the nuclear layers contain cell bodies, while each of the plexiform 

layers serves as a connection site between cells in the surrounding layers. Axons of the 

RGC bodies also form their own layer, known as the retinal nerve fiber layer (RNFL); 

these axons exit the eye at the optic disk to relay visual information from the retina to the 

cortex.  

The path of a photon can serve to explain each of these layers’ cellular 

composition and function. When a photon traverses the cornea and ocular media to reach 

the retina, it must first travel to the most distal layer of the retina to the photoreceptors to 

be encoded. Photoreceptor cell bodies inhabit the ONL, and can be divided into the 

classes of rods and cones, which contain different types of photopigments. Rods are 

sensitive to low levels of light (termed scotopic conditions) and cones are sensitive to 

higher levels of light (termed photopic conditions). Regardless of the kind of 

photopigment within a photoreceptor, transduction always occurs within the outer 

segment given that this portion of the cell houses the 11-cis retinal chromophore, which 

is bound to the photoreceptor’s opsin. When a photoreceptor absorbs a photon, the 

conformation of the chromophore changes from 11-cis retinal to all-trans retinal, which 

then separates from the opsin. Once separated, the opsin activates the protein transducin 

whose alpha subunit, which is bound to GTP, dissociates itself and then activates 

phosphodiesterase (PDE). At this point, PDE hydrolyzes cGMP, which leads to the 
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sodium channels closing. When these sodium channels close, the cell hyperpolarizes, 

which results in a decrease in the amount of glutamate it releases. 

Following the ONL is the OPL, where the primary connections being formed are 

those between the photoreceptors and the bipolar cells (BCs), whose cell bodies are 

housed in the INL. There are numerous kinds of BCs in this layer, but they can be 

generally categorized into ON-center and OFF-center cells. In other words, BC receptive 

fields exhibit a center/surround architecture with the center being either ON or OFF, and 

the surround being the opposite. The functional distinction between these two groups is 

defined by the manner in which they respond to the aforementioned decrease in 

glutamate from the hyperpolarization of photoreceptors in response to photon capture. 

Sign-inverting ON BCs depolarize in response, while sign-conserving OFF BCs 

hyperpolarize instead. This signal is then transmitted to the amacrine and ganglion cells 

through the connections formed in the IPL. 

Amacrine and ganglion cell activity is the first source of any spiking activity in 

the retina, as all cellular responses prior to this point in processing produce graded 

potentials. While amacrine cells help to mediate retinal ganglion cell (RGC) activity and 

do produce their own action potentials, the RGCs are responsible for the majority of the 

spiking activity at the retinal level, which is sent onward via the optic nerve for 

processing throughout different regions of the brain. Due to the nature of the BC signals 

that act as input, as well as the pattern of connections between BCs and RGCs that take 

place in the IPL, RGC receptive fields also typically exhibit a center/surround 

architecture. Therefore, ON-center RGCs exhibit a high spiking rate in response to an 

increase in light intensity, while OFF-center RGCs show a high spiking rate in response 
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to decrease in light intensity. Since both increments and decrements of light are encoded, 

the retina is therefore able to signal any point of intensity change throughout the visual 

scene, regardless of its polarity. These various signals from the RGCL are transferred via 

the optic nerve, where they exit the retina and proceed toward higher levels of processing 

in the brain. 

Overview of the Electroretinogram (ERG) 

 The function of many of the aforementioned levels of retinal processing can be 

non-invasively measured through the use of the electroretinogram (ERG). Although it is 

recorded at the corneal level, the ERG reflects the gross potential of the retina in response 

to a light stimulus (see Figure 2). Traditionally the ERG stimulus consists of a full-field 

uniform flash of light, a stimulus that is now distinguished as the flash ERG. Varying the 

intensity, duration, and polarity of this flash alters the characteristics of the response. The 

standard light-adapted flash ERG (Marmor et al., 2009) uses brief square-wave flashes of 

white light, which are to be a maximum of 5 ms in duration and 3.0 cd·s·m-2 in intensity 

and presented on a white 30 cd·m-2 background. This produces a small negative potential 

Figure 2. Schematic Representation of ERG 

Current. The current flow that measured in the ERG 
response is represented in blue. The (A) portion of that 
current is that which is generated in response to the 
transduction and encoding of light, and travels across 
the retina. Because other portions of the eye are 
conductive as well, the current also travels through the 
center of the eye, out to the cornea, and then back to 
the retina through the surrounding tissues (B). It is this 
portion of the current that we measure, as the ERG is 
recorded at the corneal level. From 
http://webvision.med.utah.edu. 
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known as the a-wave, followed by a larger positive potential known as the b-wave. After 

the b-wave comes a large negative potential known as the photopic negative response 

PhNR), but this waveform component is not recognized by the current standards for this 

paradigm. An example of the complete resulting waveform is shown in Figure 3A. 

In addition to the standard flash paradigm, long-duration flash stimuli (Figure 3B) 

act as an alternative stimulus option that allows additional waveform components to be 

observed in the response (Pangeni, Lammer, Tornow, Horn, & Kremers, 2012; 

Vukmanic, Godwin, Shi, Hughes, & DeMarco, 2014). This alternative employs stimulus 

durations of approximately 150-250 ms (rather than 5 ms, as is used in the standard flash 

Figure 3. Flash ERG Stimulus Options. The standard brief flash stimulus (A) and 
long-duration flash stimulus (B) are compared, along with their respective responses. 
Note that the d-wave is only seen in response to long-duration decrements and cannot 
be seen in the response to a brief flash. Modified from Vukmanic et al., 2014. 

PhNR 
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paradigm), providing the retina with sufficient time to recover from its initial response 

over the course of the flash duration. Due to this recovery period, both b-waves and d-

waves can be observed in response to a single flash’s onset and offset, respectively. This 

is in contrast to the standard brief-duration flash response in which the b-wave and the d-

wave are mixed due to lack of sufficient time for separation.  

Origins of the a-wave 

The first change in potential is the a-wave, which is a small negative potential 

whose leading edge reflects the hyperpolarization initiated by photoreceptors (Hood & 

Birch, 1995; Robson, Saszik, Ahmed, & Frishman, 2003). The latter portion of the a-

wave appears to be largely driven by hyperpolarizing second-order neurons, which was 

most notably shown when cis-2,3-piperidine-dicarboxylic acid (PDA) was applied to the 

macaque retina (Bush & Sieving, 1994). Upon application of PDA, which blocks 

transmission from the photoreceptors to hyperpolarizing second-order neurons, the flash 

ERG response no longer showed an a-wave in response to a flash of any luminance 

within 1 log td above the photopic threshold. The effects of PDA continuously decreased 

(indicated by an increase in a-wave amplitude) until about 4 log td, at which point the 

effect was still present, but plateaued. Based on this trend, the authors presume the source 

of the a-wave at higher intensities (particularly those >4 log td) to be hyperpolarization of 

cones. Therefore, a combination of hyperpolarizing photoreceptors and second-order 

neurons is understood to be the source of this component, with the degree of contribution 

from each of the two cell classes varying with flash intensity. 
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Origins of the b-wave 

 The b-wave is the first positive potential seen in the flash ERG response, and is 

largely shaped by a combination of ON (depolarizing) and OFF (hyperpolarizing) bipolar 

cell responses. More specifically, depolarizing bipolar cells (DBCs) seem to provide the 

main source of the positive potential, and hyperpolarizing bipolar cells (HBCs) decrease 

the amplitude and duration of the b-wave, shaping the response. Evidence for this idea 

was first seen in the non-human primate retina when 2-amino-4-phosphonobutyric acid 

(APB), PDA, and kynurenic acid (KYN) were applied (Sieving, Murayama, & 

Naarendorp, 1994). The application of APB, which diminishes the response of DBCs but 

does not affect the response of HBCs, led to a severe decrease in b-wave amplitude, but 

an increase in a-wave and d-wave amplitude. However, when PDA and KYN were 

applied together to suppress responses from hyperpolarizing postreceptoral neurons 

(including both HBCs and horizontal cells), the resulting response showed a sustained 

positive plateau that lasted for the duration of the flash, making it difficult to identify 

Figure 4. Effects of APB, PDA, and KYN on the b-wave. The b-wave seems to largely 
originate in DBCs, as applying APB severely diminishes or even extinguishes the response 
(A). However, the HBCs and horizontal cells must serve to shape and limit the response, as 
application of PDA + KYN yields a large positive potential that lasts for the entire duration of 
the flash (B). Modified from Sieving et al., 1994. 
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specific waveform components (see Figure 4). Based on these results, it can be surmised 

that the b-wave is largely driven by DBCs, but is shaped and limited in duration by HBCs 

and horizontal cells.  

Origins of the d-wave 

Upon applying APB and PDA to pharmacologically assess the origins of the d-

wave in macaque retina (Ueno et al., 2006), it appears that both photoreceptors as well as 

HBCs combine to drive the positive component of this waveform. More specifically, the 

HBC component largely drives the first peak of the d-wave, and the photoreceptors drive 

the second peak of this waveform. As expected, the ON pathway hyperpolarizes in 

response to a decrement of light. Therefore, the ON pathway does not add to the positive 

potential seen in the d-wave, but rather serves to shape the response. See Figure 5 for the 

contributions from each of the aforementioned pathways. 

 

 

Figure 5. Effects of APB and PDA on 

the d-wave. The original d-wave (in 
black) is compared to the portion of the 
d-wave originating in photoreceptors 
(green), the ON pathway (blue), and the 
OFF pathway (red) in macaque. These 
results suggest that the OFF pathway 
provides the primary source of the 
initial portion of the response, with the 
photoreceptors providing the latter 
portion of the positive potential, and 
the ON pathway component serves to 
shape the response. From Ueno et al., 
2006. 
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Origins of the Photopic Negative Response (PhNR) 

 Appearing as a negative potential after the b-wave (see Figure 3A), the PhNR is a 

component of the standard flash ERG that is known to reflect non-linear spiking activity 

of the retina, rather than linear activity like that which drives the a-, b-, and d-waves. As 

shown in macaque retina (Viswanathan, Frishman, Robson, Harweth, & Smith, 1999), 

the PhNR was severely reduced or eliminated in response to increment flashes when the 

retina was subject to tetrodotoxin (which blocks spiking activity) or experimental 

glaucoma (which lowers the functionality of the RGCL), though the a- and b-wave 

components remained unchanged. These authors therefore concluded that the RGCL 

likely drives this response, though its timing suggests that it may be mediated by glial 

cells. A reduction in the PhNR of human glaucoma patients provides further evidence 

that the RGCL is likely to be the source of this response (Preiser, Lagreze, Bach, & 

Poloschek, 2013), as glaucoma affects integrity of the optic nerve and, consequently, the 

RGCL. 

Multifocal Electroretinogram (mfERG) 

 In contrast to the presentation of full-field flashes which yield one holistic 

response across the retina, the multifocal electroretinogram (mfERG) offers an alternative 

method of assessment that produces localized responses across the retina. To accomplish 

this, the mfERG stimulus consists of a 23° × 23° hexagonal array whose spatial and 

temporal properties seek to equalize the degree of cone stimulation as a function of 

eccentricity. Spatially, the hexagons are centered on the fovea and stretched by a factor 

that reflects the variations in cone receptive field density across the central retina, which 

seems to be optimized when the stretch factor is adjusted based on the specific recording 
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equipment and parameters being used for that session (Poloschek & Bach, 2009). 

Temporally, the flashes of the individual hexagons follow an m-sequence, a 

pseudorandom order of presentation that maximizes the signal-to-noise ratio for these 

localized responses while ensuring that they remain uncorrelated across various regions 

of the retina  (Sutter & Tran, 1992). The localized responses from each hexagon exhibit 

highly similar response characteristics of those seen in a full-field flash ERG response, 

but seem to vary somewhat depending on whether ON responses, OFF responses, or an 

addition of the two is being assessed (Rodrigues, da Silva Filho, Silveira, & Kremers, 

2010). Although the mfERG has been shown to be useful in a variety of contexts, all of 

the responses to be investigated in this work are ones which represent the holistic 

response of the retina; therefore, the mfERG will not be employed. 

Overview of the Pattern Electroretinogram (PERG) Response 

In addition to the early stages of retinal processing, the ERG is also capable of 

reflecting the later processes that take place primarily in the RGCL. Instead of a uniform 

flash of light, the PERG utilizes a spatial stimulus, typically a checkerboard or grating 

pattern, which reverses in contrast. Half of the stimulus displays an increment of light as 

the other half displays a decrement of light, yielding no change in net luminance as the 

polarities of each section reverse simultaneously. Since the responses to increment and 

decrement flashes of light are primarily reflective of large graded potentials, it is thought 

that these signals linearly cancel via simultaneous stimulation of early retinal ON- and 

OFF-retinal pathways. Due to this cancellation of larger linear potentials of opposite 

polarities, the smaller remaining response is understood to represent remaining non-linear 

spiking activity, which primarily originates in the RGCL. 
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Current source density (CSD) analysis has shown that even the precise sources 

and sinks of the retinal currents evoked differ based on whether the stimulus is a uniform 

flash of light or a contrast-reversing pattern, implying that the PERG generates a different 

bioelectric field. For instance, the predominant source-sink pair for the flash ERG seems 

to be in the distal half of the retina, whereas the predominant pair for the PERG appears 

to be in the more proximal half of the retina near the nerve fiber layer (Baker, Hess, 

Olsen, & Zrenner, 1988). Additionally, the differences between the fields imply that the 

PERG dipole is likely orthogonal to the eye axis, whereas the flash ERG dipole seems to 

be relatively coaxial (Chou & Porciatti, 2012), further distinguishing the responses to 

these two kinds of stimuli. These results from various CSD-based analyses are in 

alignment with the aforementioned understanding that the flash ERG response is largely 

representative of the earlier, linear retinal processes that generally originate in the 

photoreceptors and bipolar cells (Evers & Gouras, 1986; Stockton & Slaughter, 1989; 

Ueno, Kondo, Niwa, Terasaki, & Miyake, 2004), whereas the PERG represents the non-

linear activity of the retina which primarily originates in retinal ganglion cells and 

amacrine cells. Further explanation and evidence of the PERG response origins are 

discussed in detail later in this dissertation. 

Standards for Recording and Analyzing the PERG Response 

 Although there are numerous variations of the methods used to record the PERG 

response, the International Society for Clinical Electrophysiology of Vision (ISCEV) sets 

the standards for both clinical and research-based recordings. Since these standards are 

re-evaluated and updated every five years, the specifications from the most recent update 

(Bach et al., 2013) are referenced in this review. 



www.manaraa.com

 

12 
 

Stimulus Presentation. The standard stimulus for the PERG is a black and white 

checkerboard that reverses in contrast, resulting in the simultaneous transition of black 

checks to white checks and white checks to black checks. Each check is 0.8° × 0.8° 

(±0.2° on each side), with the entire stimulus field being approximately 15° × 15° (±3° 

for each side). A high contrast level between the white and black checks is ideal, with the 

minimum acceptable level being 80%. Contrast is to be measured based on the difference 

between the luminance values of the light and dark checks, which is most appropriately 

determined by the formula for Michelson contrast due to the patterned nature of the 

stimulus. 

Additionally, the PERG should be recorded under photopic conditions, with the 

white checks being no dimmer than 80 candelas per meter squared (cd/m2). For transient 

recordings, where the entire response to a contrast reversal is completed before another 

contrast reversal occurs, the checks should reverse at a rate of 4.0 ± 0.8 reversals per 

second (rps). For steady-state recordings, the response to a contrast reversal has not fully 

completed before another reversal occurs. In these cases, ISCEV recommends using the 

higher reversal rate of 16 ± 3.2 rps. For all PERG recordings, regardless of reversal rate, 

it is imperative that eye movements are minimized, which is accomplished by the 

placement of a fixation point in the middle of the stimulus. It is also necessary for the 

subject to see the stimulus clearly. Therefore, ISCEV maintains that the eye should not be 

dilated, and any optical correction necessary to attain a clear image should be employed. 



www.manaraa.com

 

13 
 

Key Components of the Waveform. The prominent waveform components in a 

PERG response vary based on whether it is a transient or a steady-state recording. In 

transient recordings, the waveform can be separated into individual components, whereas 

steady-state recordings only allow for holistic analysis. For this reason, only specific 

components of the transient waveform will be discussed here. The standard, transient 

PERG in human is composed of three main components (Figure 6). The first is a small 

negative wave that occurs around 35 ms after the beginning of the response, and is 

therefore termed N35. The next component is known as P50, as it is a larger, positive 

component that occurs approximately 50 ms after the onset of a pattern reversal. This 

portion of the response is the most commonly-assessed waveform component. After P50, 

a large negative component follows, occurring at approximately 95 ms into the response, 

and is therefore termed N95. Although N35 is sometimes used as a reference point, it is 

primarily P50 and N95 that have been of greatest interest to researchers and clinicians 

using the PERG, and are therefore much more frequently reported. It should be noted that 

the preferred name of each component tends to differ with species. 

Figure 6. Transient PERG 

Waveform Components. The 
transient PERG waveform 
consists of 3 key components: 
N35 (a negative potential 
occurring at approximately 35 ms 
after stimulus onset), P50 (a 
positive potential occurring at 
approximately 50 ms after 
stimulus onset), and N95 (a 
negative potential occurring 
approximately 95 ms after 
stimulus onset). Modified from 
Bach et al., 2013. 
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Analyzing the PERG Response. For transient responses, both amplitude and time-

to-peak (also known as implicit time) are to be reported for each waveform component of 

interest. N35 is not currently of clinical interest and there is no standard for assessing its 

amplitude. However, P50 amplitude is commonly measured, and extends from the trough 

of N35 to the peak of P50. (If N35 is not readily apparent, the measurement is simply 

made from the average baseline of the response to the peak of P50.) Similarly, N95 

amplitude is to be measured from the peak of P50 to the trough of N95. (See Figure 6 for 

amplitude measurements.) For any waveform component, the implicit time can be 

measured in milliseconds from the onset of the response to the peak or trough of that 

component.  

Figure 7. Comparison of Transient and Steady-State Responses. Transient responses are 
shown on the left, from a stimulus that was reversing at 2 Hz (4 rps). Steady-state responses 
are shown on the right, from a stimulus that was reversing at 8.3 Hz (16.6 rps). Note that P50 
and N95 are distinguishable in the transient responses, but that only key positive (P) and 
negative (N) peaks can be identified in the steady-state responses due to the difference in 
morphology. These responses are recorded from non-human primates, but show the same 
morphological markers as those found in human. From Luo & Frishman, 2011. 
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For steady-state PERG responses, the phase shift of the response relative to the 

stimulus and the amplitude of this response should both be measured by assessing the 

second harmonic after the waveform has been subject to Fourier analysis. If phase shift is 

reported instead of implicit time, it should be specified as to whether the phase shift is 

increasing or decreasing with implicit time. Since the morphology of a waveform 

response to a steady-state stimulus is different from that of a transient waveform, 

attempts to identify individual components of steady-state responses are discouraged. 

(See Figure 7 for a comparison of transient and steady-state response morphology.) 

Cellular Origins of the PERG Response 

Contributions from Retinal Ganglion Cell Layer (RGCL) 

 As previously mentioned, the PERG is thought to be primarily driven by the 

RGCL. Much of the support for this theory comes from animal models and human case 

studies that compare PERGs in healthy subjects and those with damage to the RGCL. For 

example, PERG responses were measured in each eye of an adult man who had 

undergone a surgically-induced unilateral optic nerve section 30 months prior to 

recording (Harrison, O'Connor, Young, Kincaid, & Bentley, 1987). Because the optic 

nerve of one eye had been severed, retrograde degeneration resulted in RGC death in that 

eye by the time these recordings were made, but the eye was understood to be otherwise 

unaffected. This expectation was supported by the observation that there were no 

significant differences in flash ERG response between the two eyes. In contrast, the 

PERG was severely reduced in the eye that had experienced the optic nerve section 

relative to the eye that was still fully healthy, indicating that a significant portion of the 

response must rely on the functional integrity of the RGCL (Harrison et al., 1987). 
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 Similarly, the PERG has also been assessed in various animal models of optic 

nerve sections. In cats, optic nerve sections tend to result in a PERG response that 

gradually decreases when recorded over a period of months after the surgery (reflecting 

the RGC degeneration) until it plateaus at a very low-amplitude response once RGCs are 

no longer functional (Tobimatsu, Celesia, Cone, & Gujrati, 1989; Vaegan, Anderton, & 

Millar, 2000). Other work in cat has found that the PERG is extinguished entirely only 4 

months after optic nerve section, when most (but not all) of RGC functionality is thought 

to be lost (Maffei & Fiorentini, 1981). Each of these three studies has also shown that the 

flash ERG responses were unaffected by the section of the optic nerve, which indicates 

that earlier retinal layers are minimally affected (if at all) and corroborates the 

aforementioned case study in human. Despite the discrepancy in the exact degree of 

PERG amplitude reduction between studies, it still seems to be clear that the functionality 

of the RGCL plays a vital role in driving the PERG response in cat. 

 Although cats have been some of the most commonly-studied animals for 

observing the effects of optic nerve section as they pertain to the PERG response, these 

effects have been investigated in other animal models as well. Rats, for example, also 

showed a greatly diminished PERG response four months after optic nerve section, 

suggesting that they too are highly (but not fully) dependent on the integrity of the RGCL 

(Berardi, Domenici, Gravina, & Maffei, 1990). In pigeon, however, the PERG amplitude 

decreased immediately following the section, but then gradually returned to normal 

amplitude within 24 weeks. Therefore, the PERG response in pigeon must not be 

generated from the RGCL, indicating that the pigeon may not act as a proper model of 

the PERG response in human (Blondeau, Lafond, & Brunette, 1987). 
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Similar to the uses of optic nerve section reported above, optic nerve crush has 

been used in mice for the same purpose of examining the dependence of PERG responses 

on the RGCL. Instead of severing the optic nerve as in the case of a section, an optic 

nerve crush involves literally a crushing pressure on the exposed optic nerve, typically 

with a blunt instrument. Like the optic nerve section, this procedure results in the atrophy 

of the RGCs, but leaves all other retinal functioning intact. When PERG responses are 

Figure 8. Reduction of the PERG Response after Optic Nerve Crush. Individual PERG 
responses from 4 mice both before an optic nerve crush (black lines), as well as 39-42 days 
after an optic nerve crush when RGC degeneration had taken place (red lines). Although the 
PERG responses were severely reduced after RGC degeneration from the optic nerve crush, the 
flash ERG responses remain unchanged (insets in upper right corner of each graph). This acts 
as further confirmation of an RGC origin for the PERG response since those were the only cells 
affected from the crush, and only the PERG was reduced while the flash ERG (which reflects 
earlier retinal processes) was unaffected. From Miura et al., 2009. 
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recorded from mice who have experienced optic nerve crush, the result is generally a 

severe and irreversible reduction in PERG amplitude, though some mice have shown that 

the response is eliminated entirely (Chou, Park, Luo, & Porciatti, 2013; Miura, Wang, 

Ivers, & Frishman, 2009). Post-crush PERG responses and flash ERG responses are 

compared in Figure 8, which shows the expected finding of a reduction in PERG 

amplitude and an unaltered flash ERG response. In summary, these studies across various 

species show that an intact and functional RGCL is required to produce the PERG 

response. 

Contributions from the ON and OFF Pathways 

 Two of the most fundamental visual pathways are the ON and OFF pathways, 

each of which begins at the bipolar cell layer of the retina and continues on through the 

cortex. As previously described, the ON pathway is excited by increments of light, while 

the OFF pathway is excited by decrements of light. Because these differential excitatory 

responses can be seen in the RGCL of the retina, it is important to understand the 

weightings of each of their contributions to the PERG response since there are equal 

degrees of local luminance onsets and offsets at any given time in viewing the PERG 

stimulus. This question has been addressed most directly through the use of animal 

models in which the ON and OFF pathways can be assessed separately via 

pharmacological manipulation. 

 As shown in Figure 9, mice were injected with APB to block the synapses 

between ON-bipolar cells and photoreceptors (blocking the ON pathway for all stages of 

processing), and PDA to block signal transmission to OFF-pathway bipolar cells and all 

RGCs (blocking the OFF pathway for all of the following levels of processing). When 
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APB was applied, the mouse PERG response no longer exhibited a P1 component 

(equivalent to the P50 component in human), indicating that the ON pathway is a key 

source of the P1 component in mouse. An application of tetrodotoxin (TTX), which 

blocks all spiking activity, followed the APB application, which led to the abolition of the 

N2 component (equivalent to the human N95) that had previously been isolated from 

APB. When PDA was applied alone in a different group of mice, both the P1 and N2 

components were severely reduced. Taken together, these results suggest that the ON 

Figure 9. Effects of APB, APB+TTX, and 

PDA on PERG Recordings in Mouse. 

Averaged PERG recordings from four mice 
are shown both before (black lines) and after 
(red lines) various injected treatments. 
(Individual traces are shown in the inset 
graphs in the top right of each main graph). 
An injection of APB, which blocks the ON 
pathway, eliminated P1 (A), and the addition 
of TTX (which blocks spiking activity) after 
APB resulted in the elimination of both P1 
and N2 (B). Injection of PDA, which blocks 
OFF pathway activity, reduced both P1 and 
N2 amplitude. Modified from Miura et al., 
2009. 
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pathway acts as the primary origin of the P1 response, whereas the OFF pathway seems 

to contribute to both the P1 and N2 response in mouse (Miura et al., 2009). 

Some differences were found when these drugs were applied in macaque (Luo & 

Frishman, 2011). When APB was applied alone, both the P50 and N95 components were 

reduced to half of their original amplitudes, indicating that the ON pathway must 

extensively contribute to the overall response. Upon the application of PDA alone, N95 

was eliminated, but P50 amplitude was increased, suggesting that the OFF pathway 

drives the N95 response and limits the P50 response in this model. Spiking activity was 

also shown to play a key role in generating the transient PERG response, as TTX 

eliminated the reduced, but present P50 seen in those monkeys who served as models for 

experimental glaucoma. Given these findings, the authors conclude that while the ON and 

OFF pathways must contribute to the transient PERG response components somewhat 

differently, they seem to be of approximately equal weighting in regards to each of their 

levels of contribution to the holistic response amplitude in non-human primate. 

In steady-state PERG responses recorded in this same study, application of APB 

severely reduced response amplitude to the point of nearly extinguishing it. Applying 

PDA to healthy animals seemed to generally increase the amplitude of the steady-state 

PERG, though these results were somewhat inconclusive given that it actually decreased 

response amplitude for one of the macaques tested. While TTX did not fully eliminate the 

steady-state PERG response, it drastically decreased it in each of the animals tested. 

When these three resulting responses from different pharmacological manipulations are 

considered together, they imply that steady-state PERG responses in non-human primate 

are largely driven by the ON pathway with relatively little contribution from the OFF 
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pathway. Further, retinal spiking activity seems to be a significant component of the 

steady-state PERG response, just as it did in the transient PERG response (as detailed in 

the previous paragraph). 

Stimulus Factors that Affect the PERG 

Pattern Type 

 Although the standard for PERG recordings is a square-wave reversing 

checkerboard (Bach et al., 2013), any patterned stimulus that reverses in contrast and 

maintains a constant net luminance with light and dark portions equally distributed 

throughout the stimulus is satisfactory to record a PERG response. Therefore, the effect 

of varying pattern type has been explored by multiple studies. One way in which this has 

been investigated was through the comparison of checkerboard and grating stimuli, 

though this has yielded conflicting results. In one of the key early studies to make this 

comparison, PERG responses elicited from square-wave checks and square-wave stripes 

of the same spatial frequency were found to be equal in amplitude, implying there was no 

effect of changing the pattern type (Armington, Corwin, & Marsetta, 1971). However, 

when a later study compared square-wave checks to both sine- and square-wave gratings, 

the checks consistently elicited a larger response in both human and pigeon subjects 

(Vaegan & Arden, 1987). These two examples represent a general debate of the effects of 

pattern type that still continues in the literature today. 

Temporal Frequency 

 Another element of the PERG stimulus that can affect its respective response is 

the rate at which the contrast reverses, known as the temporal frequency (TF). One way 

in which the response is affected is through the frequently-demonstrated trend of 
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response amplitude changing as a function of TF. Although there is clearly an effect of 

TF on PERG response amplitude, reports vary as to exactly how the response changes 

with reversal rate. One of the major disputes in the literature is the number of peaks seen 

in the curve derived from amplitude plotted as a function of TF. Some reports give 

evidence for one peak at a somewhat lower TF (Berardi et al., 1990; Berninger & 

Schuurmans, 1985; Brannan, Bodis-Wollner, & Storch, 1992; Heine & Meigen, 2004; 

Siegel, Marx, Bodis-Wollner, & Podos, 1986), whereas others have found two different 

peaks, with one being a lower TF and the other being a higher TF, with a dip in amplitude 

occurring between the two peaks (Falsini & Porciatti, 1996; Hess & Baker, 1984; Odom, 

Maida, & Dawson, 1982; Porciatti & Sartucci, 1996). 

 Within those reports that have provided evidence for only one peak TF, the exact 

TF of that peak varies somewhat. Animal models have also been included in these 

reports, but their use as models seem valid as their peaks fall in the same TF range as 

those reported from human subjects. In rat, the peak seems to be between 8 and 12 rps 

(Berardi et al., 1990), and in macaque, it is reported to be 12 rps (Siegel et al., 1986). In 

humans, there is slightly higher variability, as reported peaks have consisted of 

approximately 4.8 rps (Brannan et al., 1992) and 11.1 – 16.2 rps (Heine & Meigen, 

2004), while another report indicates a peak of 10 rps that occurred for N95 only, with no 

peak shown in P50 (Berninger & Schuurmans, 1985). As previously mentioned, transient 

responses are known to be elicited from stimuli that reverse at lower TF rates, while 

steady-state responses result from higher TF rates (Sokol, Jones, & Nadler, 1983). Since 

these peaks fall within a range that includes both higher TFs of the transient range and 
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lower TFs of the steady-state range, they do not provide a reliable consensus as to 

whether transient or steady-state stimuli might elicit larger responses. 

Similarly, the results that indicate two peaks in human responses show some 

variability, as well. Some reports indicate a first peak of very low TF, up to 4 rps, and a 

second peak of slightly higher TF, being in the range of 8-16 rps (Hess & Baker, 1984; 

Odom et al., 1982). Others, however, indicate that both peaks occur at higher TFs, with 

the first peak being in the range of 12 – 24 rps and the second peak in the range of 32-40 

rps, and an absolute cutoff between 50 and 60 rps (Falsini & Porciatti, 1996; Porciatti & 

Sartucci, 1996). It is possible that this variability (both regarding the number of peaks 

reported as well as the discrepancies as to what those peaks may be) might be related to 

the fact that these studies used very different ranges of spatial frequencies in their stimuli, 

as there is a growing body of evidence that suggests the presence of an interaction 

between TF and spatial frequency (Berninger & Schuurmans, 1985; Heine & Meigen, 

2004; Hess & Baker, 1984; Siegel et al., 1986).  

Spatial Frequency 

 Although the effect of spatial frequency on the PERG has been investigated in a 

large number of studies, there is a high degree of variability across the many results. 

While most investigations have yielded some degree of spatial tuning (defined as 

amplitude change as a function of spatial frequency), some failed to find any effect of 

spatial frequency whatsoever. This complete lack of spatial tuning was found both in 

human, at a reversal rate of 3 rps (Kirkham & Coupland, 1983), and in pig, at a reversal 

rate of 8 rps (Janknecht, Wesendahl, Feltgen, Otto, & Bach, 2001). However, Janknecht 

and colleagues noted that their results in pig may not have been indicative of a true lack 
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of spatial tuning, as the data showed a high degree of variability and generally low 

amplitudes under most conditions. Since this only leaves one known study to date that 

has failed to find spatial tuning, it is highly possible that the spatial frequency of a 

stimulus does have at least a minimal effect on the PERG response. 

 Other studies have found a minor effect of spatial tuning, albeit only under certain 

conditions for some. For instance, Armington and Brigell (1981) found that lower to 

middle spatial frequencies showed no difference in amplitude, but that increasing the 

spatial frequency (up to a maximum of 5.46 cycles per degree [cpd] for this study) did 

result in a slight reduction in amplitude. Similarly, a later study (Bach & Holder, 1996) 

found that amplitude decreased monotonically with increasing spatial frequency past 

approximately 2 cpd, which was true for both the standard 15°×15° stimulus field as well 

as the larger 30°×30° stimulus field. Both of these studies evaluated the effects of spatial 

frequency at transient TFs. However, when spatial tuning was investigated across three 

different TFs, it was only found to be present at the higher two reversal rates (7.5 and 15 

rps), but not at the lowest rate tested (1.88 rps) (Sokol et al., 1983). Therefore, the 

specific TF chosen may play a pivotal role in determining the degree of spatial tuning 

seen in the response. 

 Despite those accounts documenting little to no spatial tuning being present in the 

PERG response, many others have found spatial tuning consistently across a range of 

different conditions. Some of these results indicate similar findings to those from Sokol 

and colleagues (1983) in that amplitude is shown to monotonically decrease as spatial 

frequency increases (Armington et al., 1971; Korth, 1983). Similarly, a low-pass function 

has also been found in rat (Berardi et al., 1990). Perhaps the most common finding has 
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been that the human spatial tuning curve is actually bandpass (Arden & Vaegan, 1983; 

Porciatti et al., 1989; Thompson & Drasdo, 1989), though these reports do not show a 

widespread agreement as to where the peak of this function occurs. Despite this 

variability of peak spatial frequency, when a bandpass nature of the PERG’s spatial 

tuning is seen, it appears to be independent of contrast, luminance, or temporal frequency 

(Hess & Baker, 1984). In addition to the claims of the function being potentially low-pass 

or bandpass, there is also some evidence to suggest that the PERG response amplitude 

increases with spatial frequency (Leguire & Rogers, 1985), though most findings would 

disagree with this report. 

 In addition to the variability regarding the degree of spatial tuning present, there is 

also some variability regarding the potential interaction between transient waveform 

components (P50 or N95) and spatial tuning. When the trends between the two waveform 

components differ, it seems that P50 shows limited spatial selectivity that is only present 

under low-contrast conditions (Korth & Rix, 1985), or no spatial tuning at all (Berninger 

& Schuurmans, 1985; Wu, Armington, & Reeves, 1992). However, N95 appears to be 

consistently spatially tuned when evaluated independently (Berninger & Schuurmans, 

1985; Korth & Rix, 1985; Wu et al., 1992). A wide-scale review of this literature echoed 

this trend, and suggested that steady-state recordings would also be more likely to show 

spatial tuning than would transient responses. Therefore, while there is some discrepancy 

as to the exact shape of the spatial tuning curve, it does appear that any spatial tuning 

present is likely to vary with the precise stimulus parameters used. 
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Contrast 

 Contrast level between the dark and light checks in the PERG stimulus has been 

varied extensively to evaluate its effect on the PERG response, yielding a widespread 

consensus that PERG amplitude increases monotonically with contrast (Arden & Vaegan, 

1983; Korth, 1983; Leguire & Rogers, 1985; Thompson & Drasdo, 1989). However, it 

appears that this increase does not begin until contrast exceeds 1 – 20% (Hess & Baker, 

1984). This effect of contrast does not seem to hold when hemifield stimuli are 

compared, regardless of whether they are nasal/temporal or superior/inferior (Katsumi, 

Tetsuka, Mehta, Tetsuka, & Hirose, 1993), though further investigation will be necessary 

to confirm this. Since the relationship between the standard PERG and contrast is so 

robust, it is imperative to maximize stimulus contrast so that the already-small response 

amplitude can be maximized, as well. It should also be noted that bright ambient lighting 

can lead to a decrease in contrast at the level of the screen itself, indicating that the PERG 

should be recorded under lower photopic conditions to obtain the strongest and most 

reliable responses (Bach & Schumacher, 2002). 

The effect of adapting to the PERG stimulus has also been assessed at various 

contrast levels in an effort to understand how it may potentially affect PERG amplitude, 

though the literature does not seem to show a strong consensus on this issue. Upon 

watching a steady-state PERG stimulus at 99% contrast, it was found that the amplitude 

continuously decreased over time, an effect which was not found when the contrast was 

lowered to 25% (Porciatti, Sorokac, & Buchser, 2005). In opposition to this finding, the 

presentation of the PERG with swept contrast changes (where the contrast is either 

continuously increasing or decreasing within a single presentation) had no effect on the 
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PERG contrast threshold, regardless of the direction of the sweep (Brigell, Peachey, & 

Seiple, 1987). Although these results would imply that adaptation was not taking place, it 

may be the case that adaptation to the PERG is possible, but only over a prolonged 

viewing period. 

An interaction between contrast and spatial tuning has also been suggested by 

some investigations. Generally, spatial selectivity seems to be more prevalent when 

stimuli are of higher contrast levels, with lower contrast levels showing little to no spatial 

selectivity (Korth & Rix, 1984; Sokol et al., 1983; Tetsuka, Katsumi, Mehta, Tetsuka, & 

Hirose, 1992), though some evidence points to this only being the case for P50, with N95 

showing spatial selectivity at all contrast levels (Korth & Rix, 1985). Contrast sensitivity 

functions (CSFs) have also been evaluated in the PERG, and have been compared to 

those determined psychophysically. When plotted as a function of spatial frequency, the 

PERG CSF peaked at a lower spatial frequency relative to the traditional psychophysical 

CSF (Peachey & Seiple, 1987). Using the PERG to determine one’s CSF has therefore 

been shown to be a valuable tool to evaluate one’s retinal contrast sensitivity rather than 

one’s cortical contrast sensitivity, which is likely to be reflected in the psychophysical 

CSF. 

In addition to interacting with spatial frequency, the effects of contrast also seem 

to have an interaction with temporal frequency. The first demonstration that the contrast 

transfer function (CTF), which plots amplitude as a function of contrast, changes in shape 

when temporal frequency is altered was shown by Zapf and Bach (1999). Their data 

indicated that below approximately 7 rps, the CTF increases linearly with contrast. 

However, as temporal frequency increases, their data indicate that the CTF becomes 
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increasingly exponential. To further investigate this trend, another study evaluated the 

CTF with an even larger range of stimulus parameters that also added the use of a 

linearity index (Ben-Shlomo, Bach, & Orfi, 2007). Upon doing so, it was found that the 

linearity index value (where 1 = completely linear and 0 = a step function) generally 

decreased as temporal frequency increased. Additionally, these authors demonstrated that 

the stimulus could be reversed at rates of up to 10 rps before the CTF began decreasing in 

linearity. Together, these studies indicate the importance of acknowledging temporal 

frequency when comparing results from stimuli that differ in contrast. 

Luminance versus Contrast Origins of the Response 

 Much of the reason that the PERG response is thought to be primarily contrast-

based is due to the lack of net change in luminance across the stimulus.  Because 

increments in luminance are consistently occurring to the same degree and at the same 

rate as decrements in luminance, the expectation is that the linear ON activity will 

average with the linear, and opposite, OFF activity to yield a null result for these earlier 

levels of processing, leaving only contrast-based activity to be recorded. One can test this 

hypothesis by modeling the PERG response using increment and decrement flashes.  

Modeling the PERG response from flash ERG responses was first tested by Arden 

& Vaegan (Arden & Vaegan, 1982), who summed increment and decrement responses 

and compared the result to the standard PERG response in humans. The summed 

response was consistently larger than the PERG response across an extensive range of 

local background luminance. Later, this same principle was applied to the macaque 

retina, both in healthy animals and in those which had been established as models of 

experimental glaucoma (Viswanathan, Frishman, & Robson, 2000).  Increment and 
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decrement responses were halved and then summed to create PERG simulations in this 

study, so as to account for the fact that only half of the stimulus field is displaying an 

increment or decrement in the actual PERG stimulus at any given time. These results 

indicated that for both healthy and glaucomatous animals, the simulated PERG seemed to 

accurately represent the implicit times of both P50 and N95 of actual PERG responses 

from stimuli recorded at the lowest spatial frequency of 0.1 cpd, but then showed 

increasing delay with increasing spatial frequency (other tested spatial frequencies 

included 1.5 and 3 cpd). For all spatial frequencies, however, the amplitude of the 

simulation exceeded that of the actual PERG response.  

More recently, PERG simulations have been carried out with human data using 

this same model of halving and then summing increment and decrement responses 

(Simpson & Viswanathan, 2007).  In human, it was shown that the model was able to 

accurately reflect the waveform of the actual PERG response, and with no more 

variability than that which was found in those actual PERG responses. However, the 

PERG responses that were modeled only accounted for a very limited set of possible 

parameters, namely a 42°×32° grating (which is much larger than the standard 15°×15° 

checkerboard) and a spatial frequency of either 0.04 or 1 cpd, reversing in contrast at a 

rate of 2 times per second. Since this work, this same model has been expanded for use 

across four different temporal frequencies (2, 4, 6.2, and 16.6 rps) in macaque so as to 

test the accuracy of both transient and steady-state simulations (Luo & Frishman, 2011).  

Results of this further testing indicated that in non-human primate, both the 

implicit time and the amplitude of the P50 component of the simulation were 

significantly different from the implicit time and amplitude of the P50 component from 
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the PERG response, whereas there were no differences in either of these measures 

between the simulation and PERG response for the N95 component (Luo & Frishman, 

2011). Therefore, it may be the case that changes in temporal frequency affect the 

accuracy of the model differently for these two waveform components, though this has 

not yet been confirmed in humans. 

 Conversely, previous evidence in cats has shown that spatial frequency, which is a 

measure of the size of the elements in the stimulus, may determine whether the response 

is more luminance- or contrast-driven, as finer patterns yielded a contrast-based response 

while coarser patterns yielded a luminance-based response (Tobimatsu et al., 1989). 

Regardless of the exact degree to which luminance and contrast each drive the PERG 

response, though, it is clear that the resulting waveform from a patterned stimulus is 

much smaller and somewhat different in morphology relative to the resulting waveform 

from a uniform flash of light. Therefore, the PERG must reflect characteristically 

different activity than that of a flash ERG, even if the exact relationship between the two 

responses and their respective origins is still unknown. 

Application of the PERG in Disease States 

 Since the PERG is useful in clinical contexts, it is necessary to understand how 

each of the various diseases that have been documented specifically affects the PERG 

response in order to increase the response’s diagnostic value, as well as the accuracy with 

which one may use the PERG to monitor disease progression. Despite the clear benefits of 

examining PERG responses from clinical populations, it can be difficult to study an 

isolated disease in human patients since there are often comorbidities present. Additionally, 

the same disease can show a high degree of variability in its effects across a single patient 
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base, making it difficult to compare results across subjects, and particularly across studies. 

Because of these constraints, animal models of diseases affecting the PERG can also be 

extremely valuable when assessing the ways in which this response is affected within a 

specific clinical context. Therefore, several of the more common disease states that can 

employ PERG for diagnostic and/or monitoring purposes have been investigated in both 

human and animal models, which are both discussed in more detail below. 

Ocular Hypertension 

Ocular hypertension (OHT), a condition in which the eye experiences unusually 

high intraocular pressure but does not immediately cause damage to the optic nerve, is a 

major marker in identifying glaucoma suspects. Because of this, OHT is carefully 

monitored by ophthalmologists, which may include the use of PERG recordings since it 

typically affects the integrity of the RGCL. When OHT was induced unilaterally via laser 

in a rat model, the PERG amplitude (measured from the peak of P1 to the trough of N2, 

parallel to the human N95 amplitude) was reduced by approximately 45%, which was 

correlated with the degree of loss of RGCs (Ben-Shlomo et al., 2005). These data mimic 

the changes seen in the human PERG response recorded from OHT patients, as PERG 

amplitudes in OHT patients have been shown to be consistently lower than those of healthy 

controls in response to steady-state patterns (Falsini et al., 2008; Ventura, Golubev, Feuer, 

& Porciatti, 2010).  

Transient PERG responses have also been informative in human OHT patients, as 

they have allowed for the evaluation of specific waveform components independently. For 

instance, one investigation found no change in N95 amplitude, but did find a negative 

correlation between intraocular pressure and P50 amplitude. Since retinal nerve fiber layer 
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(RNFL) thickness (which decreases with RGC death) was not correlated with P50 

amplitude, however, these data suggest that the changes seen in the PERG may represent 

a lowered functionality of the RGCs due to higher intraocular pressure rather than actual 

RGC death (Uva et al., 2013). These conclusions are further strengthened by the 

observation that transient changes in intraocular pressure can lead to temporary, reversible 

decreases in PERG amplitude as measured in responses to steady-state patterns (Giuffre, 

Falsini, Gari, & Balestrazzi, 2013). 

Often, OHT patients are only evaluated using steady-state stimuli since that is the 

most sensitive (and therefore the most common) stimulus type used to diagnose and 

monitor glaucoma, generally making it more advantageous than transient PERG 

recordings. For example, when compared with optical coherence tomography (OCT) and 

frequency-doubling technology (FDT) perimetry (two other methods of assessing OHT), 

the transient PERG was the least sensitive measure of the three options tested (Cellini, 

Toschi, Strobbe, Balducci, & Campos, 2012). Because the transient PERG is not often used 

in clinical evaluation of OHT due to its relative lack of sensitivity, further investigation 

using transient stimuli for research purposes is needed to definitively show how and to 

what extent individual waveform components are affected in the PERG responses of OHT 

patients. 

Glaucoma 

Glaucoma is a disease in which damage to the optic nerve is experienced, with 

visual field defects resulting from this damage. Usually, the optic neuropathy seen in 

glaucoma is a product of elevated intraocular pressure due to a buildup of aqueous humor 

(Foster, Buhrmann, Quigley, & Johnson, 2002). Unfortunately, this disease is highly 
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prevalent, as it currently affects about 60 million people worldwide, and has led to 

blindness in about 8.4 million of these individuals (Cook & Foster, 2012). Further, 

glaucoma is projected to affect approximately 79.6 million by 2020, with an estimated 11.2 

million of those patients becoming blind because of the disease (Quigley & Broman, 2006). 

Because the PERG response originates in the RGCL, the PERG has been one tool of use 

in predicting, diagnosing, and monitoring glaucoma, as explained in more detail below. 

Predicting Glaucoma. One way in which clinicians may use the PERG in the 

context of populations at risk for glaucoma is in predicting which glaucoma suspects are 

most likely to later develop the disease. Although there is some debate as to whether or not 

the PERG is a useful measure of glaucoma prediction, a review of the literature pertaining 

to the PERG as a predictive tool found that it was generally useful in detecting damage 

from RGC loss (often indicating early glaucoma) before any deficits were noticeable in 

one’s visual field (Bach & Hoffman, 2008). One way in which this investigation has been 

furthered since the time of the aforementioned review is through the comparison of the 

PERG against three different forms of perimetry that are also known to be used to diagnose 

and monitor glaucoma. All tools yielded a similar level of accuracy of glaucoma diagnosis 

with the exception of FDT perimetry, which yielded a slightly higher diagnostic accuracy. 

Despite this difference, the authors explicitly note that the PERG is not to be discounted 

since it is a more objective measure of RGC functionality given that it does not rely on 

behavioral responses (Tafreshi et al., 2010).  

Following this study, the PERG was assessed longitudinally for its ability to predict 

which patients with OHT would progress to a diagnosis of glaucoma within four years. 

More specifically, the clinical utility of evaluating the PERG response from a single visit 
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was compared to that gained from multiple visits over time. While the PERG was indeed 

found to successfully predict which patients would develop glaucoma, trends acquired 

from multiple visits did not lead to significantly more predictive power than did the data 

from a single visit (Bode, Jehle, & Bach, 2011), which suggests that one recording session 

yields a sufficient amount of data to predict the development of glaucoma.  

In addition to knowing how much data is needed to predict this disease, it is also 

pertinent to recognize characteristic differences between those who may develop glaucoma 

and those who are already in its early stages. To establish what differences should be 

expected, PERG responses from glaucoma suspects were compared to those from patients 

with early primary open angle glaucoma. Both groups showed an increase in N95 implicit 

time, but only early glaucoma patients showed a decrease in N95 amplitude, indicating that 

changes in implicit time may be characteristic of RGC dysfunction while changes in 

amplitude may be characteristic of cell death (Jafarzadehpour, Radinmehr, Pakravan, 

Mirzajani, & Yazdani, 2013). Although these data all exemplify the PERG’s ability to 

predict which glaucoma suspects will experience progression to the disease itself, it is still 

unclear if the PERG is equally able to predict the progression of severity past disease onset 

(Ventura, Golubev, Feuer, & Porciatti, 2013). 

 Simulated and Experimental Glaucoma. Efforts to isolate the origins of the PERG 

response in glaucoma have often led to simulated and experimental models of the disease, 

since these allow for more highly- and uniformly-controlled conditions. In human, 

healthy control populations can be used to produce results that simulate those of 

glaucomatous patients by altering the stimulus to mimic what a patient would see. Upon 

reducing the contrast, luminance, clarity and area of the stimulus to simulate conditions 
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experienced in glaucoma, Porciatti and Ventura (2009) reported that the amplitude and 

implicit time of the PERG were independently affected in their data. Therefore, these two 

measures most likely represented two different aspects of RGC activity. The previously-

discussed results of Jafarzadehpour and colleagues (2013) seem to provide further 

support for this idea within an actual clinical population, indicating both that the 

simulation was probably an accurate representation of the PERG response in glaucoma, 

and that amplitude and implicit time may well reflect independent processes. 

 Animal models can also be useful ways to explore the effects of glaucoma on the 

PERG, with one of the most useful models being the macaque. Two macaque studies 

implemented unilateral experimental glaucoma by elevating the intraocular pressure via 

laser, and then allowing the resulting OHT to progress into glaucoma. In one of these 

studies, the resulting PERG response showed a severely reduced N95 and a moderately 

reduced P50 relative to the healthy eye (Viswanathan et al., 2000). The other study, 

however, showed that experimental glaucoma completely eliminated both P50 and N95 

(Luo & Frishman, 2011). Despite the minor discrepancy regarding the degree of 

amplitude reduction, it is clear that the PERG response from the macaque model is 

consistently reduced in amplitude when experimental glaucoma is induced in otherwise-

healthy animals. A similar result has been found in a mouse model of glaucoma, which 

was monitored over time with disease progression. As expected, the amplitude of the 

PERG in mice with experimental glaucoma declined with age until the PERG response 

was completely eliminated, showing that the mouse is also a reliable model in which to 

measure functional inner retinal degradation (Porciatti, Saleh, & Nagaraju, 2007). 
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PERG Amplitude Decrease in Humans. Across many of the earlier reports of 

PERG measurements in glaucomatous eyes, PERG response amplitude was reduced or 

even eliminated while the flash ERG showed no significant changes (Rimmer & Katz, 

1989). More recent investigations have shown this reduction in both components of the 

transient PERG, as well as the general amplitude measurement of the steady-state PERG 

(Bach & Hoffman, 2008), as seen in Figure 10. Unfortunately, many of the investigations 

conducted in both transient and steady-state conditions have led to a somewhat high 

degree of variability, both within and between studies. Since finding this pattern, the 

PERG ratio was developed in hopes of reducing such variability. To calculate this ratio, 

the PERG amplitude from the upper hemifield of the stimulus is divided by the PERG 

amplitude from the lower hemifield of the stimulus so as to account for the known trend 

of RGC loss occurring predominantly in only one hemifield for most glaucoma patients. 

Although the PERG ratio has been shown to reduce the higher levels of variability often 

found across PERG recordings in glaucoma patients, it does maintain the risk of missing 

Figure 10. Amplitude Reduction in 

Transient and Steady-State PERG 

Recordings in Healthy and 

Glaucomatous Eyes. As is 
exemplified here, individuals with 
glaucoma (grey bars) exemplify 
lower PERG amplitudes relative to 
those with healthy eyes (white bars). 
This is true for both P50 and N95 in 
the transient PERG, as well as the 
sole amplitude measurement taken 
made in the steady-state PERG. From 
Bach & Hoffman, 2008. 
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peripheral and symmetrical RGC loss and is therefore only applicable for limited 

purposes (Graham, Wong, Drance, & Mikelberg, 1994). 

More recent studies have investigated the precise changes in PERG responses 

from glaucoma populations in more detail. For example, reductions in RNFL thickness 

have been shown to correlate with the decrease in PERG amplitude for those with early 

glaucoma, but not for those with OHT. Therefore, it has been suggested that the changes 

in the PERG from OHT are generally from damage to the optic nerve head and retinal 

function, whereas the changes seen in the PERG of those with early glaucoma likely 

reflect both functional losses as well as loss in RNFL thickness (Falsini et al., 2008). 

Within glaucoma patients specifically, the degree and nature of adaptation to steady-state 

PERG stimuli were assessed as a function of severity, and compared to a group of healthy 

controls. Adaptive changes associated with the phase of the PERG response were 

significantly correlated with disease severity, despite the fact that adaptive changes 

associated with the amplitude of the PERG response were not. Therefore, when assessing 

the PERG within glaucoma patients to determine differences in severity, response phase 

may actually act as a more reliable and accurate marker than amplitude (Porciatti et al., 

2013). 

Other Diseases Affecting the PERG 

 Although OHN and glaucoma populations are the most frequent clinical 

applications of the PERG, other maladies have also been reported as causing changes in 

PERG activity. For instance, reduced to absent PERG responses have been found across 

patients that represent a range of varying ocular diseases affecting the optic nerve after 

development (Fiorentini, Maffei, Pirchio, Spinelli, & Porciatti, 1981; Guy et al., 2014; 
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Rodriguez-Mena et al., 2013; Talla et al., 2013), as well as cases in which the optic nerve 

is unsuccessful in fully developing to begin with (McCulloch, Garcia-Filion, Fink, Chaplin, 

& Borchert, 2010; McCulloch, Garcia-Filion, van Boemel, & Borchert, 2007). However, 

the disease or visual impairment of interest does not have to primarily or even directly 

affect the optic nerve to alter the PERG; scotomas (Junghardt, Wildberger, Robert, & 

Torok, 1993), amblyopia (Rimmer & Katz, 1989), diabetes without the presence of 

retinopathy (Ventura et al., 2010), Parkinson’s disease (Armstrong, 2011; Garcia-Martin 

et al., 2014), and even depression (Bubl, Kern, Ebert, Bach, & Tebartz van Elst, 2010) have 

all been linked to reductions in PERG amplitude. Based on the varied assortment of 

diseases and dysfunctions in which the PERG may be affected, all comorbidities should be 

noted when interpreting PERG results in a clinical setting. 
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CHAPTER II 

GENERAL METHODS AND ANALYSES 

Although the PERG response has been well-established over the course of several 

decades, some assumptions regarding the dogma of this response have yet to be verified. 

One such assumption is that the local increment and decrement responses elicited by the 

PERG stimulus linearly cancel, leaving only the non-linear retinal activity to be seen in 

the response. Another underlying idea is that any spatial tuning seen in the PERG 

response to varying the check size of the PERG stimulus is reflective of the spatial tuning 

that has previously been seen in responses from individual RGCs. The present work 

sought to investigate the validity of these two assumptions. Experiment 1 aimed to model 

the PERG response from flash stimuli, and Experiment 2 evaluated the degree of spatial 

tuning seen in response to PERG stimuli whose elements had been scaled by a scaling 

factor that mimicked the approximate rate of change of RGCf size. After successfully 

modeling the PERG response in Experiment 1, Experiment 3 sought to verify this 

response in a population of glaucoma patients and determine its translational value in this 

patient population. Although some methods varied by experiment, others were common 

to all three investigations. Such general methods and analyses are described below. 
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General Methods 

Participants 

 Individuals were recruited through the University of Louisville’s online subject 

pool (via Sona Systems, Ltd. recruitment software), as well as through flyers placed 

around campus. Upon assessing intrasubject variability from pilot data (σ2 = 1.24), an 

effect size of f = 0.64 was found for our recordings for α = 0.05 and β = 0.95. Based on 

this effect size, a minimum of 12 participants were needed for each temporal frequency in 

each of the three experiments, since data from each temporal frequency were considered 

separately. All participants for Experiments 1 and 2 were adults with normal or corrected-

to-normal vision, between the ages of 18 and 55 years. 

Apparatus and Stimuli 

Monocular ERG responses were recorded using DTL electrodes (Dawson, Trick, 

& Litzkow, 1979) from healthy human subjects. Silver cup electrodes were used for both 

the ground and the reference. The ground electrode was centered on the forehead and  the 

reference electrode was placed on the ipsilateral temple. The ERG signal was amplified 

10,000x, analog filtered from 0.1 – 100 Hz, and digitized at a rate of 1000 samples per 

second with online artifact rejection (±100 µV). Although ISCEV recommends against 

the use of a notch filter (Bach et al., 2013), pilot data showed no difference in waveform 

amplitude or morphology when used in the conditions that characterize the work 

described here, so it was implemented to reduce 60 Hz noise and therefore increase the 

signal-to-noise ratio. To further reduce the artifact of noise on waveform measurements, 

all recordings were subjected to a zero-phase first-order low-pass Butterworth filter with 

a cutoff of 30 Hz. As seen in Figure 11, this filter did not alter the morphology of the 
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response. Impedance was measured prior to recording, and had to be less than 5 kΩ for 

the subject to be able to participate in any part of this study.  

Stimuli were generated using a graphics-generating software package (Vision 

Research Graphics, Durham, NH) run on a standard PC, and were displayed on a Hitachi 

SuperScan Pro 21” CRT monitor that was positioned 36 in from the subject. The height 

and width of each stimulus was 14.3° ×14.3°. All stimuli were square-wave flashes (in 

the case of PERG simulations using the flash ERG) or counterphase reversals (in the case 

of PERG recordings) and were presented on a uniform gray background (52.35 cd/m2)  

background (52.35 cd/m2) that was approximately equal to the average luminance value 

between the light (104.50 cd/m2) and dark (0.20 cd/m2) sections of the PERG stimulus. 

All stimuli were presented both at transient (4 rps) and steady-state (15 rps) temporal 

frequencies. 

General Analyses 

 Each ERG waveform assessed as part of the comparative data analysis 

represented the average of a minimum of 100 responses, though typically 120 – 180 were 

recorded. Before assessing any of these averaged waveforms, each was normalized to a 

baseline of 0 µV. For responses to transient stimuli, amplitudes of P50 waveform 

components were measured from the trough of N35 to the peak of P50, while N95 

amplitudes were measured from the peak of P50 to the trough of N95. Implicit time was 

also measured for both P50 and N95, and was defined for each as the number of 

milliseconds from the onset of the flash or contrast reversal to the point at which the peak 

or trough occurred for that waveform component. For responses to steady-state stimuli, 

Fourier analysis was used to determine the amplitude and phase shift via assessment of 
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the second harmonic (which represents the reversal rate). Since transient and steady-state 

waveforms are known to characteristically differ, no comparisons were made between the 

two types of stimulation. 

 

 

 

  

Figure 11. Effect of Low-Pass Filtering. A zero-phase, first-order, low-pass 
Butterworth filter with a 30 Hz cutoff was applied to each recording before analysis to 
remove excess noise. As seen in the subset of PERG responses shown above, the 
filtered waveforms (dashed lines) reflected the true morphology of the original signals 
(solid lines). 
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CHAPTER III 

EXPERIMENT 1: MODELING THE PATTERN ELECTRORETINOGRAM IN 

HEALTHY ADULTS 

 

Experiment 1: Modeling the Contributions of Luminance and Local Spatial 

Contrast on PERG Response 

Hypothesis: The PERG response is the result of linear cancellation of 

simultaneous increment and decrement retinal responses, and can therefore be modeled 

by a summation of ERG responses elicited by increment and decrement flashes. 

 Aim:  Create a model of the PERG that incorporates amplitude scaling, temporal 

timing, and retinal area stimulated by increment and decrement retinal responses.  

Rationale: As reviewed in Chapter I, previous attempts to model the PERG from 

flash ERG responses have relied on the assumption that responses from the retinal ON- 

and OFF-pathways, as reflected in the b-wave and d-wave responses, are opposite-

polarity graded potentials which sum to leave only the non-linear, RGC-driven activity. 

There are two implicit assumptions underlying this standard model. The first 

assumption is that the b-wave and d-wave responses can be added together without 

further consideration of retinal processing that may take place subsequent to the 

generation of the b- and d-wave responses, for example, in the inner-plexiform layer. 

Further retinal processing may scale increment and decrement responses separately, or 
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alter the phase relationship of the responses, ultimately affecting the morphology of the 

resulting PERG response. 

The second assumption is that the spatial content of the PERG stimulus and the 

associated processing of local contrast edges by the retinal circuits can be ignored when 

modeling the PERG response using flash ERG responses. Implicit in this assumption is 

that the retinal area stimulated by the light and dark checks is half that of a uniform flash 

stimulus of the same stimulus field size. As previously discussed, prior models of the 

PERG response have simply averaged together the b-wave and d-wave responses 

generated from long-duration flash stimuli to create a simulated PERG waveform. While 

the PERG response may result from the cancellation of simultaneous retinal responses to 

light increments and decrements, this cancellation process may involve retinal circuits 

that respond differently to a pattern stimulus versus a flash stimulus. Therefore, simply 

summing the b-wave and d-wave responses from a uniform field may not take into 

account amplitude scaling or timing factors that result from the retinal response to a 

patterned stimulus.  

One would also expect these factors to be altered by the temporal frequency of the 

stimulus pattern (i.e. transient versus steady-state PERG paradigms). This is of particular 

concern given the findings that the transient PERG has approximately equal contributions 

from the ON and OFF pathways, whereas the steady-state PERG seems to originate 

largely within the ON pathway (Luo & Frishman, 2011). Based on mixed results from 

previous experiments that have attempted to simulate the PERG (Arden & Vaegan, 1983; 

Luo & Frishman, 2011; Simpson & Viswanathan, 2007; Viswanathan et al., 2000), I 

propose that these assumptions may not be valid and should to be tested further.  
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Procedure. Pupils were dilated and visual accommodation was relaxed with 2.5% 

phenylephrine hydrochloride and 1% tropicamide. In the absence of accommodation, and 

to maintain acuity, subjects viewed all PERG stimuli through corrective lenses. 

Responses were recorded from both PERG stimuli and flash stimuli in an effort to 

simulate the PERG response using flash ERG protocol. PERG recordings followed the 

ISCEV standards (Bach et al., 2013), using the recommended checkerboard with 0.8° 

checks and a mean luminance of 52.35 cd/m2 (black checks = 0.20 cd/m2, white checks = 

104.50 cd/m2), with a maximized contrast of 99.62% between black checks and white 

checks. Two different categories of flash stimuli were used to create the PERG 

Figure 12. Stimuli Used in Experiment 1. Experiment 1 seeks to model the standard PERG 
response by summing increment and decrement responses from flash stimuli. To accomplish 
this, simulations were created from both uniform flash stimuli (A) as well as checked flash 
stimuli (B) to model the response seen from a standard PERG stimulus (C). 
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simulations (see Figure 12). One category (Figure 12A) consisted of uniform light that 

alternated between black (decrements) and white (increments), while the other category 

(Figure 12B) alternated between checkerboards of gray and white checks (increments) 

and gray and black checks (decrements). 

The gray used in the checked flash stimuli was the same luminance as that of the 

local background (52.35 cd/m2), which represented an average between the luminance 

values of the increments and decrements. All flash stimuli used the same reversal rates as 

those of the PERG stimuli (4 and 15 rps), and also used the same luminance values of the 

increment and decrement portions of the PERG stimulus. Because increment and 

decrement stimuli were presented separately in the flash stimuli conditions, the contrast 

within a checkerboard PERG stimulus was higher than that of each individual flash 

stimulus (i.e. an increment or decrement flash against a local gray background of 52.35 

cd/m2), but matched the modulation depth between increment and decrement stimuli. 

Analyses. For both transient and steady-state responses, PERG recordings from 

standard checkerboards were compared to simulations created from summed increment 

(ON) and decrement (OFF) responses to either uniform flashes of light or checked flashes 

of light. Since the flash ERG responses used for PERG simulations were recorded in one 

waveform, each was split into its ON and OFF components so that they could each be 

normalized to a baseline of 0 µV and then summed to produce that participant’s 

simulation. Once simulations from both uniform flashes and checked flashes were 

created, error was calculated between each simulation and the PERG response waveform, 

with a lower degree of error indicating a better fit.  
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Because each of the two uniform flash stimuli was as large as the PERG stimulus, 

the simulation from combined flash responses represents twice as much retinal 

stimulation as that of the PERG response. This study, however, also used checked flash 

stimuli, which provided the same degree of actual stimulation as the increments and 

decrements seen within the PERG stimulus. To determine if this difference in degree of 

retinal stimulation affected the simulation, two paired-samples t-tests compared the error 

of the uniform-flash simulation to that of the checked flash simulation for transient and 

steady-state conditions, respectively. Since past authors (Luo & Frishman, 2011; 

Simpson & Viswanathan, 2007; Viswanathan et al., 2000) have tried to account for this 

luminance discrepancy by averaging the b- and d-wave amplitudes, two paired-samples t-

tests were used to compare the goodness of fit from the averaged uniform-flash b- and d-

waves to that of the summed checked flashes. One of these t-tests made this comparison 

for transient responses, with the other being for those which were steady-state.  

In designing this experiment, however, it was recognized that even separate 

flashes in the appropriate spatial layout with the same amount of luminance as that found 

in the PERG stimulus would not necessarily create the best-fitting simulation since these 

flashes were not being processed simultaneously. To account for this possibility, 

algebraic manipulations of the simulations created from uniform flash stimuli were also 

compared to the original PERG response. The first of these manipulations consisted of 

scaling the amplitude of the increment and decrement responses before summing to 

create the simulation. Pilot data had consistently shown that the simulation from uniform 

flashes was larger in amplitude than the actual PERG waveform (see Figure 13 for a 

sample of these pilot data), which may be due to a difference in the gain mechanism(s) 
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between uniform flashes and checked flashes, as previously mentioned. Therefore, the 

amplitudes of both increment and decrement responses were scaled in increments of 5% 

down to a waveform that was 25% of the original response. Each possible combination of 

scaled increment and decrement responses was evaluated.   

The second of these manipulations aimed to account for known differences in 

response kinetics between the ON and OFF pathways (Chichilinsky & Kalmar, 2002) by 

shifting the b-wave along the x-axis before summing it with the d-wave. Specifically, it 

was shifted both forward (occurring after the start of the d-wave) and backward 

(occurring before the start of the d-wave) in 2 ms intervals, up to a total of 10 ms in each 

direction. Since it is currently unclear exactly how response kinetics are characterized in 

the context of the increment and decrement combinations within the PERG stimulus, this 

wide range of timing possibilities helped to account for the potential for either pathway to 

respond to its respective stimulus components more quickly. Finally, permutations of 

each degree of scaling and phase shifting were also assessed to account for possible 

interactions between these two sets of processes.  

Each participant’s simulation was compared to his or her original PERG response 

of the appropriate temporal frequency via an error metric calculated by totaling the sum 

of squared differences between the PERG waveform and the simulation of interest. In 

other words, the difference between the PERG response and its respective simulation was 

calculated for each point in time, and then squared. After a squared value of this nature 

had been attained for each millisecond in time (200 ms for transient responses, 536 ms 

for steady-state responses), they were summed to account for the total area of difference 

between the two waveforms, which acted as the participant’s error for that comparison. 
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For each participant, error was normalized to a peak value of 1 by dividing all error 

values by the maximum error value obtained across all simulations within that temporal 

frequency. The simulation with the lowest degree of error was labeled as the best fit for 

each subject. Since these algebraic manipulations produced many different simulations, 

there was some variability in the specific scaling and time-shifting parameters that 

represented the model of best fit for each individual. For this reason, the average of 

individual best-fit parameters was calculated to create an averaged model of best-fit for 

each temporal frequency. Upon calculating this average, these parameters were rounded 

to their closest integer value of the interval appropriate for that measure (i.e. 2 ms for 

time-shifting, 5% for amplitude-scaling). 

After individual and averaged best-fit parameters were established for both 

transient and steady-state conditions, a paired-samples t-test compared the degree of error 

from the simulation using the averaged best-fit parameters to the simulation using each 

individual’s best-fit parameters. One such t-test was conducted for best-fit parameters 

found under transient conditions, and another was conducted for best-fit parameters 

found under steady-state conditions. Further, an additional set of paired-samples t-tests 

compared the individual best fits to the checked flash simulation to see which produced 

the lowest error. In each set of comparisons, Holm’s procedure was used to maintain a 

family-wise error rate of 0.05. 

All of the comparisons that have been discussed thus far have focused on the 

holistic degree of error between a simulation and the original PERG waveform. However, 

comparisons of transient waveforms also allow for the possibility of evaluating this 

degree of error as it pertains to the specific waveform components of P50 and N95. As 
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detailed in Chapter I, these two response components have been shown to differ 

somewhat in origin (Luo & Frishman, 2011; Miura et al., 2009), and therefore may differ 

somewhat in the degree to which they can each be successfully modeled in the context of 

the present PERG simulations. For this reason, the same comparisons that were made to 

assess the fits of holistic waveform simulations were used to assess the fits of the portions 

of the waveform that represent P50 (35 to 65 ms) and N95 (85 to 115 ms). The ranges for 

each of these components were selected based on where these components were found in 

pilot data. 

Results. As previously described, each categorical comparison yielded two paired-

samples t-tests: one which compared results within transient stimuli, and one which 

compared results within steady-state stimuli. For all comparisons, each value assessed 

represented the degree of error between that simulation and the actual PERG response. 

All statistics (both descriptive and inferential) were performed on the degree of 

normalized error present in each simulation, as described in more detail in the above 

Analyses section. Because of this, all values reported are representative of such error, but 

it should be noted that the present results are discussed in regards to goodness of fit. 

Since degree of error and goodness of fit are inversely related, the inference used to 

describe these results is that lower error indicates a better fit.  

Averaged differences between amplitudes and implicit time/phase measurements 

of the simulations and the actual PERG response are reported in Table 1. For each set of 

t-tests, Holm’s procedure is employed to maintain a family-wise error rate of 0.05. For 

this reason, adjusted α-values are reported alongside all t-values, degrees of freedom, and 

p-values in Table 2 for holistic waveforms (transient and steady-state), and in Table 3 for 
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transient waveform components (P50 and N95). It should be noted that while 37 

participants took part in this experiment, only 24 of them participated in the checked-

flash stimuli conditions. Therefore, any comparisons made to the checked-flash 

simulation were only using the data from those 24 participants so as to keep all 

comparisons within-subject. 

  

Figure 13. Experiment 1 Pilot Data. For each subject, both ON/b-wave responses 
and OFF/d-wave responses were recorded in response to uniform flash stimuli (A). 
These responses were then summed and normalized to create a simulation of the 
PERG (B, solid line). As is seen here, the PERG simulation is of greater amplitude 
than the PERG response to the standard checkerboard for both waveform 
components (B, dashed line). Additionally, N2 displays a greater implicit time than 
does N95. Since this model shows much of the same morphology, but some 
amplitude and timing differences, further manipulations such as flashing checked 
stimuli and algebraic alterations will be employed in an effort to improve the 
accuracy of the model. Data displayed are from subject 229. 
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To better understand the effect that each variable had on the resulting degree of 

error, see Figures 14 and 15 for the effects of scaling and time-shifting, respectively. As 

seen in Figure 14, the goodness of fit was more drastically impacted by the degree to 

which the b-wave was scaled relative to the degree by which the d-wave was scaled for 

both transient and steady-state simulations. Additionally, the range of fit success was 

highly similar for transient simulations and steady-state simulations when comparing 

these effects of scaling. However, when the effect of time-shifting the b-wave was 

assessed, the pattern of results differed between transient and steady-state simulations. 

Figure 14. Averaged 

Degree of Error as a 

Function of Scaling. 

The averaged degree 
of error between the 
PERG response and 
simulations, excluding 
time-shifting, is 
plotted as a function 
of scaling factor for 
the b-wave and d-
wave. Despite some 
minor differences, the 
pattern of these effects 
are highly similar for 
both transient (A) and 
steady-state (B) 

simulations. In both 
cases, the degree to 
which the b-wave is 
scaled has a much 
more drastic effect on 
the goodness of fit 
than does the degree 
to which the d-wave is 
scaled. 
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For transient simulations, goodness of fit increased with the delay of the b-wave, with the 

most optimal fit resulting from shifting the b-wave to start 10 ms after the d-wave. In the 

case of steady-state simulations, goodness of fit decreased with the delay of the b-wave, 

with the most optimal fit resulting from shifting the b-wave to start 10 ms before the d-

wave. Overall, time-shifting alone resulted in more successful fits for transient 

simulations than it did for steady-state simulations (as seen in Figure 15). 

For both transient and steady-state conditions, the uniform-flash simulations (raw 

sums of b-waves and d-waves) were far greater in amplitude than the actual PERG 

responses. This was expected given that the flash stimuli used to create the b-waves and 

d-waves that contributed to the uniform-flash simulation each comprised the same 

stimulus field size as that of the PERG. Because of this, the uniform-flash simulation is 

representative of twice the amount of stimulation as that of the PERG response, and is 

therefore expected to produce a larger-amplitude response relative to the PERG. In the 

case of the individual best-fit simulations, however, both the amplitude and timing tend 

to align well with those respective measures of the actual PERG response. To see 

examples of individual simulations and actual PERG responses, see Figure 16. Averaged 

PERG responses and simulations can be found in Figure 17. 

 To eliminate this confound of differences in retinal stimulation, the present study 

also employed checked-flash stimuli, which represented both the correct degree of 

luminance and accurate spatial layout of the increment and decrement flashes within the 

PERG stimulus. To evaluate the efficacy of these checked-flashes relative to the uniform 

flashes, goodness of fit was compared between the simulations created from each of these 

two stimulus types using two paired-samples t-tests (one for transient conditions and one 
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for steady-state conditions). For transient stimuli, the simulation created from uniform 

flashes (M = 0.600, SD = 0.256) yielded a worse fit than that which was created from 

checked flashes (M = 0.343, SD = 0.219; t(23) = 3.976, p = 0.001). The same result was 

found when the steady-state uniform-flash simulation (M = 0.722, SD = 0.160) was 

compared to the steady-state checked-flash simulation (M = 0.268, SD = 0.192; t(23) = 

9.026, p < 0.001), indicating that the degree of retinal stimulation has a significant impact 

on how well these simulations are able to fit the true PERG response. 

 Since transient responses are often evaluated in regards to their individual 

components, this same comparison was made for both P50 and N95 with two additional 

t-tests. The goodness of fit for the P50 component was found to be greater for the 

uniform-flash simulation (M = 0.580, SD = 0.243) relative to the checked-flash 

simulation (M = 0.175, SD = 0.237; t(23) = 4.786, p < 0.001), mimicking the pattern 

found for the holistic responses to both transient and steady-state stimuli. However, when 

the goodness of fit for N95 was compared between the uniform-flash simulation (M = 

0.478, SD = 0.275) and the checked-flash simulation (M = 0.430, SD = 0.325), no 

difference was found (t(23) = 0.543, p = 0.593). This may be due to the findings of Luo 

and Frishman (2011) that showed contributions of luminance-based responses to both the 

steady-state PERG and P50 component of the transient PERG, but not to the N95 

component. 

Previous work (reviewed in Chapter I) has also found this confound of differing 

degrees of retinal stimulation between that which is seen in from the PERG stimulus 

versus separate uniform-flash stimuli. To account for this, most authors have created their 

simulations by halving the amplitudes of the b-wave and d-wave and then adding these  



www.manaraa.com

 

55 
 

two waveforms together (Luo & Frishman, 2011; Simpson & Viswanathan, 2007; 

Viswanathan et al., 2000). This is mathematically equivalent to averaging the original b-

wave and d-wave. While averaging may control for the difference in luminance, it does 

not account for the flashes being presented in a different spatial arrangement, which may 

also contribute to the PERG response. To determine if there was an effect of presenting 

the flashes within a spatial context, two paired-samples t-tests compared the goodness of 

fit from the simulation created by averaging the b- and d-waves with that from the 

checked-flash simulation. One t-test was used for each temporal frequency, and two 

additional t-tests were used to assess the P50 and N95 components of transient responses. 

When the transient uniform flash simulation was scaled to 50% of its original 

amplitude (the equivalent of averaging the b- and d-waves), the fit from this scaled 

simulation (M = 0.134, SD = 0.073) was better than that of the transient checked flash 

simulation (M = 0.175, SD = 0.237; t(23) = -4.619, p < 0.001). When comparing just the 

P50 component of the 50% uniform-flash simulation (M = 0.084, SD = 0.059) to the P50 

component of the checked-flash simulation (M = 0.175, SD = 0.237), however, no 

difference was found (t(23) = -1.701, p = 0.102). In contrast, the N95 component of the 

50% uniform-flash simulation (M = 0.095, SD = 0.058) was a better fit than the checked-

flash simulation (M = 0.430, SD = 0.325; t(23) = -4.989, p < 0.001). For steady-state 

responses, no difference in goodness of fit was found between the 50% uniform-flash 

simulation (M = 0.277, SD = 0.082) and the checked-flash simulation (t(23) = 0.264, p = 

0.794). These results further support the idea of luminance-based contributions to the 

responses to the transient P50 component and the steady-state PERG response, but not to 

the N95 component of the transient response (Luo & Frishman, 2011).  
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 Individual best-fit parameters were averaged across participants to determine a 

more general model that may be applied to all participants without having to customize 

individual parameters. The present data yielded transient averaged best-fit parameters 

that shifted the b-wave to begin 0.126±0.871 ms before the d-wave, scaled the b-wave 

down to 33.694±1.885% of its original amplitude, and scaled the d-wave down to 

45.315±3.452% of its original amplitude. Steady-state best fits were produced by shifting 

the b-wave to begin 9.258±0.312 ms before the d-wave, scaling the b-wave down to 
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Figure 15. Averaged 

Degree of Error as a 

Function of Time-

Shifting. The averaged 
degree of error between 
the PERG response and 
simulations that were 
not scaled is plotted as a 
function of b-wave time 
shift along the x axis. 
For transient simulations 
(A), the optimal fit 
appears to result from 
the b-wave starting 10 
ms after the d-wave 
before summing, 
whereas for the steady-
state simulations (B), the 
best fit is found when 
the b-wave starts 10 ms 
before the d-wave prior 
to summing. Note that 
time-shifting alone 
produces better fits in 
transient stimuli relative 
to steady-state, as is 
indicated by the lower 
range of error. 
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25.161±0.147% of its original amplitude, and scaling the d-wave down to 

30.564±1.161% of its original amplitude. For both of these conditions, each of these 

values were rounded to the nearest integer value that represented a multiple of the time-

shifting or scaling integers being used in the model. This yielded a transient best-fit This 

yielded a transient best-fit that involved no time-shifting, a 35% scaled b-wave, and a 

45% scaled d-wave. The steady-state best fit was rounded to a time shift of -10 ms, a 

25% b-wave, and a 30% d-wave. 

To determine if the simulation produced from a set of averaged best-fit 

parameters yielded as good of a fit as that from the individual’s best fit parameters, the 

goodness of fit from these two simulations were compared with additional paired-

samples t-tests. In the case of transient stimuli, the simulation from an average of best-fit 

parameters (M = 0.081, SD = 0.063) was not as good of a fit as the simulation from 

individual best-fit parameters (M = 0.032, SD = 0.035; t(36) = 7.612, p < 0.001). This 

same result was found when averaged best-fit simulations were assessed in steady-state 

conditions (M = 0.228, SD = 0.106) and then compared to steady-state individual best-fits 

(M = 0.127, SD = 0.057; t(36) = 8.750, p < 0.001).  

When the individual components of the transient simulations were assessed, 

however, P50 showed no difference in fit between averaged best-fit simulations (M = 

0.059, SD = 0.069) and individual best-fit simulations (M =0.078, SD = 0.122; t(36) = -

1.162, p = 0.253). In the case of the N95 component, the simulations produced from 

averaged best-fit parameters (M = 0.085, SD = 0.106) did not fit the N95 of the PERG as 

well as those produced from individual best-fit parameters (M = 0.035, SD = 0.043, t(36) 

= 3.541, p = 0.001). Therefore, the P50 component of the transient simulation was the 
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only component measured that would not require an individualized set of parameters to 

achieve the best possible fit.  

Although these individualized best-fit parameters seemed to yield the best fit, it 

was unclear if these parameters were merely compensating for the luminance difference 

and the lack of spatial layout in the stimulus field, or if they were accounting for 

additional variations in the response caused by simultaneous presentation of the flashes.  

To assess this, goodness of fit was compared between individual best-fit simulations and 

checked-flash simulations for all conditions. Neither transient checked-flash simulations 

(M = 0.343, SD = 0.219) nor steady-state checked-flash simulations (M = 0.268, SD = 

0.192) were able to produce as good of a fit as their respective individual best-fit 

simulations (transient: M = 0.033, SD = 0.037, t(23) = -6.770, p < 0.001; steady-state: M 

= 0.128, SD = 0.062, t(23) = 4.391, p < 0.001).  

For the P50 component of the transient response, individual best-fits (M = 0.093, 

SD = 0.148) were no different from checked-flash simulations (t(23) = 1.829, p = 0.080). 

In contrast, N95 showed the same pattern as each of the comparisons of holistic 

simulations in that the checked-flash simulations (M = 0.430, SD = 0.325) did not yield 

as good of a fit as the individual best-fit simulations (M = 0.037, SD = 0.037; t(23) = 

6.018, p < 0.001). Therefore, with the potential exception of P50, it appears that there is 

some sort of difference in retinal processing of the PERG that must be accounted for 

when its increment and decrement portions are viewed simultaneously rather than 

separately. 

Finally, due to some participants’ reports of afterimages following the stimuli, the 

potential of adaptation during stimulus viewing was assessed. Since this possibility had 
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not been considered in the original design of the experiment, the precise amount of 

viewing time was not controlled for from subject to subject because of artifact rejection. 

Due to this limitation, adaptation effects were assessed by comparing the amplitude of 

from an average of the first 25 trials to that of the last 25 trials from the same stimulus. 

These 25-trial blocks were each subsets of the total number of trials averaged together to 

represent a single measurement for that individual. It is also possible that adaptation may 

have occurred more quickly within just a few trials. As is common with ERG recordings, 

however, the variability of single-trial measurements was far too great to determine if this 

was the case. 

Three paired-samples t-tests were performed to assess the degree of adaptation in 

P50, N95, and steady-state amplitudes from checkerboard PERG stimuli.  There was one 

participant for whom the file with recordings of individual trials had become corrupted, 

and was therefore excluded from this analysis. Each test compared the average amplitude 

of the first 25 responses to that of the last 25 responses for the same stimulus in an 

attempt to evaluate if this amplitude had decreased over the length of recording for that 

stimulus. For P50, the amplitude from the first 25 responses (M = 2.309, SD = 1.154) was 

not found to differ from the amplitude of the last 25-responses (M = 2.349, SD = 1.124; 

t(35) = -0.248, p = 0.805). Similarly, no difference was found between the amplitude of 

the first 25 responses (M = 4.661, SD = 1.783) and the last 25 responses (M = 4.032, SD 

= 2.145) for N95 responses (t(35) = 1.542, p = 0.132). However, in the case of steady-

state responses, the amplitude from the first 25 responses (M = 1.016, SD = 0.334) was 

greater than the amplitude from the last 25 responses (M = 0.871, SD = 0.298; t(35) = 

4.543, p < 0.001). 
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  Steady-State Transient 

S190 

S194 

S216 

Figure 16. Comparisons of Experiment 1 PERG Responses and Simulations. 

Samples of individual data are shown from three representative subjects (S190, S194, 
and S216) in response to both transient stimuli (left) and steady-state stimuli (right). 
For each plot, the PERG response (solid lines) is compared with the simulation 
created from simply summing the b- and d-waves from uniform flash stimuli (dashed 
lines), as well as with the simulation that yielded the lowest degree of error and 
therefore represented the best fit for that subject (dot-dashed lines). The amount of 
time shift (ΔT), b-wave scaling (bamp), and d-wave scaling (damp) that was employed to 
create the best fit for each subject is shown in the bottom left of each graph. Negative 
ΔT values represent the b-wave beginning before the start of the d-wave, and positive 
values represent the b-wave starting after the beginning of the d-wave. 
 

ΔT: 6 ms 
bamp: 25% 
damp: 55% 

ΔT: 0 ms 
bamp: 25% 
damp: 35% 

ΔT: 0 ms 
bamp: 50% 
damp: 55% 

ΔT: -4 ms 
bamp: 30%, damp: 40% 

ΔT: -10 ms 
bamp: 25%, damp: 30% 

ΔT: -10 ms 
bamp: 25%, damp: 35% 
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Figure 17. Averaged Experiment 1 PERG Responses and Simulations. For both 
transient (top) and steady-state (bottom) conditions, three waveforms are shown 
which represent the average of all participants’ PERG responses (solid black line), 
individual best-fit simulations (solid red line), and averaged best-fit simulations 
(dashed red line), respectively. Each of these waveforms are shown on top of the 95% 
confidence interval for the PERG response (gray fill) to see how the averaged 
simulations compare to the variability of the PERG response. 
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 100% 

Uniform 
Flash 

50% 
Uniform 

Flash 

Checked 
Flash 

Averaged 
Best Fit 

Individual 
Best Fit 

Differences in 

Amplitude (µV) 

 

Transient 

 

     

P50 Average 3.458 0.965 0.629 0.626 0.610 

P50 Standard Error 0.198 0.087 0.067 0.082 0.077 

N95 Average 7.269 1.925 3.206 1.145 0.615 

N95 Standard Error 0.444 0.229 0.313 0.131 0.099 

Steady-State      

Average 1.343 0.215 0.366 0.387 0.329 

Standard Error 0.073 0.019 0.051 0.043 0.039 

Differences in 

IT (ms)/PS (deg) 
     

Transient      

P50 Average 1.820 1.820 2.875 1.829 2.441 

P50 Standard Error 0.190 0.190 0.425 0.197 0.397 

N95 Average 14.351 14.351 15.014 12.685 11.261 

N95 Standard Error 1.348 1.348 1.237 1.357 1.299 

Steady-State      

Average 98.614 63.966 88.032 75.512 65.095 

Standard Error 8.851 16.660 12.318 11.452 10.219 

Table 1. Amplitude and Implicit Time/Phase Differences. Average differences 
and their respective standard errors are listed for the amplitude and implicit time 
(“IT,” transient) or phase shift (“PS,” steady-state) of each simulation relative to the 
actual PERG waveform, with transient simulations listing P50 and N95 waveform 
components separately.  
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Stimulus Comparison t df p Adjusted α 
     
Transient 

 

    

100% Uniform Flash 
and Checked Flash 

3.976 23 0.001* 0.050 

50% Uniform Flash 
and Checked Flash 
 

-4.619 23 <0.001* 0.025 

Averaged Best Fits 
and Individual Best 
Fits 
 

7.612 36 <0.001* 0.013 

Checked Flash and 
Individual Best Fits 
 

6.770 23 <0.001* 0.017 

 

Steady-State 

 

    

100% Uniform Flash 
and Checked Flash 
 

9.026 23 <0.001* 0.013 

50% Uniform Flash 
and Checked Flash 

0.264 23 0.794 0.050 

     
Averaged Best Fits 
and Individual Best 
Fits 
 

8.750 36 <0.001* 0.017 

Checked Flash and 
Individual Best Fits 
 

4.391 23 <0.001* 0.025 

Table 2. Error Comparisons among PERG Simulations. Comparisons (listed in 
far left column) are listed with their respective t-values, degrees of freedom, p-
values, and adjusted α values based on Holm’s procedure. Note that two sets of 
planned comparisons are being made (one for each temporal frequency), yielding 
two different sets of adjusted α values. Comparisons that are significantly different 
are denoted by an asterisk (*) next to their respective p-values. Means and standard 
deviations are reported in the text. 
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 t df p Adjusted α 
     
P50 

 

    

100% Uniform Flash 
and Checked Flash 

4.786 23 <0.001* 0.013 

50% Uniform Flash 
and Checked Flash 
 

-1.701 23 0.102 0.025 

Averaged Best Fits 
and Individual Best 
Fits 
 

-1.162 36 0.253 0.050 

Individual Best Fits 
and Checked Flash 
 

1.829 23 0.080 0.017 

N95 

 

    

100% Uniform Flash 
and Checked Flash 
 

0.543 23 0.593 0.050 

50% Uniform Flash 
and Checked Flash 

-4.989 23 <0.001* 0.017 

     
Averaged Best Fits 
and Individual Best 
Fits 
 

3.541 36 0.001* 0.025 

Individual Best Fits 
and Checked Flash 

6.018 23 <0.001* .013 

 

Table 3. Error Comparisons among Waveform Components of Transient 

PERG Simulations. Comparisons (listed in far left column) are listed with their 
respective t-values, degrees of freedom, p-values, and adjusted α values based on 
Holm’s procedure. Note that two sets of planned comparisons are being made (one 
for each temporal frequency), yielding two different sets of adjusted α values. 
Comparisons that are significantly different are denoted by an asterisk (*) next to 
their respective p-values. 
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Summary. This experiment evaluated the accuracy and usefulness of simulating 

the PERG response with only flash ERG stimuli. Based on the results reported here, it 

appears that a single model that simply averages the b- and d-wave responses does not 

adequately describe any one subject’s PERG response. Customized best-fit parameters 

for both transient and steady-state waveforms provide better fits to individual data, 

implying that a singular model will not always provide satisfactory fits to an individual’s 

PERG response. For transient responses, it may also be the case that the spatial 

component of the PERG stimulus has a large impact on the transient PERG response, as 

the checked-flash simulation yielded a lower error relative to the uniform-flash 

simulation that had been scaled to 50% of its original amplitude (which should account 

for the luminance difference). 

This spatial component may not play as large of a role in steady-state responses, 

however, as there was no difference in error found between the 50% scaled uniform-flash 

simulation and the checked-flash simulation when the temporal frequency was changed 

to 15 rps. For both transient and steady-state simulations, it may be the case that there is 

still some difference in gain mechanisms when flashes are shown separately versus 

simultaneously given that individuals’ best-fit parameters yielded lower degrees of error 

relative to the checked-flash simulations. Due to all of these limitations, it may be the 

case that the transient PERG response cannot be reliably simulated from separate 

presentations of flash stimuli. 

Just as the success of the PERG simulation was shown to vary somewhat with 

temporal frequency, so too was it shown to vary between the two waveform components 

of transient simulations. P50 seems to be more reliably replicated, as the only comparison 
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that yielded a significant difference in error was that of the 100% uniform-flash 

simulation to the checked-flash simulation. This difference is expected based on the 

luminance discrepancy alone, and shows that P50 does change in size when more 

stimulation is present. However, the comparison between the 50% uniform-flash 

simulation and the checked-flash simulation yielded no difference in the degree of error 

for the P50 component, implying that the spatial context of the stimulus is not imperative 

for its use in simulating the PERG response. Further, the P50 fit did not improve when 

the parameters were customized to the individual, regardless of whether that individual fit 

was compared to averaged best-fit parameters or checked-flash simulations. This wide 

range of equally-useful options suggests that P50 may be reliably simulated in most 

individuals. 

In contrast, the N95 component appears to be much less generalizable. When the 

100% uniform-flash simulation was compared with that of the checked-flash simulation, 

no difference in N95 error was found, indicating that luminance is not likely to be a key 

variable in simulating this component. However, when the 50% uniform-flash simulation 

was compared to the checked flash simulation, N95 error differed between the two 

waveforms. Given that the scaling of the uniform-flash simulation should control for the 

luminance difference between the two, this finding suggests that the spatial context of the 

stimulus has the capacity to substantially alter the fit of a PERG simulation within the 

N95 range.  

A difference in N95 error was also found between simulations from averaged 

best-fit parameters relative to those from individual best-fit parameters. Similarly, N95 

error also differed between checked-flash simulations and those from individual best-fit 
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parameters. Since no one simulation was found to be equally as successful as those 

simulations using individuals’ best-fit parameters, it may be the case that N95 cannot be 

reliably simulated using a single model with standardized parameters. Due to this stark 

difference between the success of simulating N95 versus P50, it may also be the case that 

the N95 component was what led to the low reliability of replicating the holistic transient 

response. See Chapter VI for further possible implications from this experiment. 

Based on the results of analyzing potential adaptation over the course of the 

recording session for PERG stimuli, it appears that no significant adaptation is taking 

place for transient stimuli since both the P50 and N95 amplitudes do not differ between 

the first 25 trials and the last 25 trials. However, there was some evidence for adaptation 

during steady state recording, which could be lowering the resulting amplitude for each 

stimulus. Since the precise amount of time spent viewing each stimulus was not 

standardized across participants, there is no way to precisely define the degree to which 

the responses would have been affected by adaptation. Given that all analyses were 

within-subject comparisons, however, it may be inferred that this possibility would not 

drastically affect the results. It may, however, suggest that future studies should regulate 

the amount of time each participant spends viewing each stimulus, as this finding should 

extend to all PERG and ERG recordings. 
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CHAPTER IV 
 

EXPERIMENT 2: OPTIMIZING THE PERG STIMULUS BASED ON A MODEL OF 

RETINAL GANGLION CELL RECEPTIVE FIELD SIZE 

 

Experiment 2: Optimizing the PERG Stimulus Based on a Model of Retinal 

Ganglion Cell Receptive Field Size 

Hypothesis: The PERG will reflect the spatial response properties of the retinal 

ganglion cells, and the response will be optimal when the spatial properties of the 

stimulus reflect the spatial scaling of RGC receptive field size across the retinal area 

stimulated.  

Aim: Determine the degree of tuning of the PERG response to spatially scaled 

stimuli based on a model of retinal ganglion cell receptive field size as a function of 

eccentricity. 

Rationale: As reviewed in Chapter I, numerous studies point to the source of the 

PERG as originating from the RGCs. Further, the amplitude of the PERG response is 

often found to be sensitive to the spatial characteristics of the stimulus presented. 

Considering both of these findings, it is likely that this spatial tuning of the PERG 

response reflects the well-established spatial tuning seen in the RGCs (Enroth-Cugell & 

Robson, 1966). Because RGC bodies (Curcio & Allen, 1990) and their respective 

receptive fields (RGCf) change in size with eccentricity, I predict that scaling a PERG 
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stimulus to account for such changes in RGCf across eccentricity will optimally stimulate 

the RGCs involved in the PERG response. 

To test this idea, I generated a custom stimulus in which the spatial frequency 

changes continuously based on a model of the human retina (Watson, 2014) which 

predicts RGCf size changes as a function of eccentricity. Using a combination of the 

known RGC counts from Curcio and Allen (1990) and the degree of displacement 

estimated by Drasdo and colleagues (Drasdo, Millican, Katholi, & Curcio, 2007), Watson 

(2014) was able to model the predicted RGCf density across central and peripheral 

regions of the human retina. Since this model is currently the most thorough prediction of 

RGCf in across the retina, it was used to design the scaled stimuli for this experiment. 

The precise degree to which stimulus spatial frequency impacts the size of the 

PERG response remains an empirical question due to mixed results from various studies. 

Based on the idea that spatial tuning does indeed have a strong effect on response 

amplitude, I propose that a PERG stimulus that is spatially scaled to mimic the 

continuous change in RGCf size will provide optimal stimulation to the RGCs involved 

in the PERG response. This stimulus should yield a response of a higher amplitude 

relative to the response from a standard PERG stimulus of uniform spatial frequency. A 

larger-amplitude PERG response would provide a better signal-to-noise ratio and allow 

for more reliable measurements, potentially leading to earlier detection of disease onset 

and more accurate monitoring of disease progression.  To control for the general effect of 

spatial scaling, I assessed the degree of spatial tuning of PERG responses to uniform 
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checkerboard stimuli that vary in check size. Two temporal frequencies (one transient, 

one steady-state), 8 variations of scaled spatial frequency, and 5 check sizes for 

checkerboards of uniform spatial frequency were tested.  

Procedure. The PERG was recorded using a set of custom-made stimuli that 

controlled for the proportional changes in retinal ganglion cell receptive field size within 

the stimulated portion of the retina, based on the model of RGCf density proposed by 

Watson (2014). More specifically, this scaling aimed to create a stimulus in which the 

RGCf density under one cycle of the grating was equal to that which falls under any other 

cycle, regardless of any potential difference in eccentricity between these two cycles. 

Since RGCf density decreases as eccentricity increases, it follows that the spatial 

frequency needed to maintain the same RGCf density within each cycle need to be 

highest in the center of the grating and lowest at the grating’s outer edges. It would be 

impractical for the parameters of the stimuli to mimic actual RGCf size since the stimuli 

would be too small to elicit a PERG response; instead, the variation in spatial frequency 

as a function of eccentricity followed the rate of change as modeled by Watson. 

Each pattern was presented as a square stimulus in which the spatial frequency is 

highest in the center and continuously decreasing in each direction toward the periphery 

(see Figure 17A). Although Watson’s formula includes a different set of parameters for 

each meridian, PERG stimuli must be symmetrical so as to provide the same net 

luminance in each direction. Therefore, the same formula was used for each meridian so 

that the changes in spatial frequency would be consistent in each direction, ensuring that 

there would be no difference in the size of the bars (spatial frequency) based on meridian 

and therefore no net change in luminance when the contrast reverses. To accommodate 
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this need, all of the values that were specific to each meridian were averaged to model the 

average change in RGCf as a function of eccentricity. With these parameters averaged 

across meridian, RCGf density is defined as  

 

 

𝑑𝑔𝑓(𝑟) =   33162.3 ∗  [0.9869 (1 +  
𝑟

1.043
)

−2

+ 0.0131 exp (
−𝑟

14.5633
)]                  (1) 

 

where dgf is RGCf density and r is eccentricity in degrees visual angle.  

However, to use RGCf density as a means of determining the necessary spatial 

frequency at a given eccentricity, it must be compared to the RGCf density within the 

region of a single cycle of spatial frequency at the centermost point of the stimulus. This 

latter RGCf density measurement can be calculated by 

 

𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =   33162.3 /𝑥                                                                                          (2) 

 

where x represents the centermost spatial frequency, and 33162.3 is the estimated RGCf 

density at an eccentricity of 0°. This density found within a single cycle of the centermost 

spatial frequency must next be compared to the density at eccentricity r that is calculated 

in Equation 1. This comparison then determines the necessary spatial frequency at 

eccentricity r as 
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𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
{33162.3 ∗ [0.9869(1 + 

𝑟

1.043
)

−2
+0.0131 exp(

−𝑟

14.5633
)]}

(
33162.3

𝑥
)

                (3) 

   

where x is the centermost spatial frequency at which the scaling begins. Since this was a 

novel PERG stimulus that had not previously been tested, the optimal center spatial 

frequency for this stimulus was unknown. Because of this, I tested a total of eight scaled 

stimuli, each with the same scaling factor but differing in center spatial frequency (0.394, 

0.625, 0.991, 1.57, 2.49, 3.94, 6.25, and 9.91 cpd). These center spatial frequencies were 

Figure 18. Experiment 2 Stimuli. Responses from PERG stimuli that have been scaled to 
approximate the proportional changes in RGCf size across the central 14.3° of the retina that 
is being stimulated (A) will be compared to those from checkerboard stimuli with uniform 
check sizes of 0.34°, 0.48°, 0.80°, 1.43°, and 2.38° (B). All scaled stimuli use the same scaling 
factor for the rate of change of spatial frequency, but 8 different center spatial frequencies are 
compared. (This portion is circled in red for the stimulus that begins at 0.394 cpd.) 
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determined by moving in increments of 0.2 log steps above and below the standard 

PERG spatial frequency of 0.625 cpd. (See Figure 18 for all stimuli tested.) 

 As a control for the efficacy of the spatially scaled stimulus, spatial tuning was 

also assessed across a series of checkerboards, each of which had a uniform spatial 

frequency across the stimulus. For the most closely-matched comparison to scaled 

gratings, responses to five different uniform check sizes of a similar spatial frequency 

range were compared (0.34°, 0.48°, 0.80°, 1.43°, and 2.38°checks; see Figure 17B for 

corresponding spatial frequencies), which included the standard PERG checkerboard 

(0.80° checks). The degree and nature of the spatial tuning curves from both the scaled 

gratings as well as the checkerboards were compared to assess the effectiveness of 

scaling the spatial frequency within the stimulus rather than simply changing the uniform 

spatial frequency across stimuli. Since the scaled stimulus was a hybrid between a grating 

and a checkerboard pattern, responses from a grating of uniform 0.625 cpd bars (which 

are spatially equivalent to a 0.8° check size) were also recorded for comparison. 

Analyses. Amplitude and implicit time were measured for each response using the 

same methods as those described in Experiment 1. Also as in Experiment 1, comparisons 

were only made within each temporal frequency. Implicit time/phase shift was not 

evaluated inferentially since it was not the measure of interest, but it is reported 

descriptively for each stimulus used. First, a pair of repeated-measures ANOVAs were 

used to separately compare response amplitude for checkerboard stimuli and scaled 

gratings, with each pair consisting of one ANOVA to assess amplitudes of transient 

responses, and one to assess amplitudes of steady-state responses. Two-way ANOVAs 

were performed on transient responses to include waveform component (P50 and N95) as 
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a factor. One-way ANOVAs were performed on steady-state responses since only one 

amplitude measure was necessary for each waveform. All following pairwise 

comparisons were made using Holm’s procedure to maintain a family-wise error rate of 

0.05. 

For each of three amplitude measurements (P50, N95, and steady-state), two t-

tests were conducted. The first of these were used to compare the amplitude between the 

0.625 cpd grating and the standard checkerboard to ensure that there was no difference in 

response amplitude.  Based on their interchangeable nature throughout PERG literature, 

these two stimuli were expected to yield the same amplitude under both transient and 

steady-state conditions. The second t-test therefore compared the highest amplitude found 

in each of the two stimulus categories (scaled gratings and uniform checkerboards) to 

determine if one type of stimulus could produce a larger-amplitude response than the 

other. As employed in Experiment 1 and in the pairwise comparisons of this experiment, 

Holm’s procedure was used to maintain a family-wise error rate of 0.05. 

Results. Amplitudes are reported for all Experiment 2 responses in Table 4, and 

implicit times/phase shifts are reported in Table 5. Upon assessing the P50 and N95 

amplitudes from responses to transient checkerboard stimuli through a 2x5 factorial 

ANOVA, it was found that there was a sphericity violation for the variable of check size, 

as indicated by Mauchly’s Test of Sphericity (χ2(9) = 47.406, p < 0.001). Therefore, 

degrees of freedom were adjusted to reflect the Greenhouse-Geisser sphericity estimates 

for this factor (ε = 0.511). There was no main effect of check size (F(2.045, 40.897) = 

2.677, p = 0.080), but as expected, there was a main effect of waveform component (F(1, 

20) = 153.175, p < 0.001).  
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There was also an interaction between check size and waveform component (F(4, 

80) = 6.412, p <0.001). Due to the presence of this interaction, simple effects of P50 and 

N95 were also evaluated via two one-way ANOVAs. Sphericity violations were found 

for amplitudes as a function of check size both P50 (χ2(9) = 18.831, p = 0.027) and N95 

(χ2(9) = 33.379, p < 0.001), so degrees of freedom were corrected to the Greenhouse-

Geisser sphericity estimates in both cases (P50 ε = 0.700; N95 ε = 0.543). A simple effect 

was found in the case of P50 (F(2.800, 56.000) = 6.395, p = 0.001), but not in the case of 

N95 (F(2.174, 43.474) = 2.315, p = 0.107). 

For response amplitudes to steady-state checkerboards, a one-way ANOVA was 

conducted. Similar to the case of the transient 2x5 ANOVA, there was a sphericity 

violation for check size (χ2(9) = 21.831, p = 0.010) so degrees of freedom were corrected 

with Greenhouse-Geisser sphericity estimates (ε = 0.653). Unlike the case of transient 

checkerboard amplitudes, however, there was a main effect of check size for amplitudes 

of responses to steady-state checkerboards (F(2.611, 52.218) = 3.148, p = 0.039). After 

adjusting p-values of pairwise comparisons via Holm’s procedure, one such comparison 

of 0.80 and 2.38 deg check sizes did reach significance (p = 0.005, adjusted α = 0.005). 

Next, separate ANOVAs were conducted to evaluate the effect of spatial tuning in 

the novel scaled grating stimuli. For transient responses, a 2x8 factorial ANOVA was 

performed. This yielded no main effect of center spatial frequency (F(7, 140) = 1.505, p 

= 0.170), but did yield a main effect of waveform component (F(1,20) = 56.924, p < 

0.001). There was no interaction between these two factors (F(7, 140) = 1.737, p = 

0.105). When this variable of center spatial frequency was assessed in steady-state 

amplitudes, a sphericity violation was found (χ2(27) = 56.214, p = 0.001) and degrees of 
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freedom were corrected with Greenhouse-Geisser sphericity estimates (ε = 0.521). This 

ANOVA showed a main effect of center spatial frequency (F(3.648, 72.956) = 4.895, p = 

0.002), and a difference in amplitude between the center spatial frequencies of 0.394 and 

3.943 cpd (p = 0.001, adjusted α = 0.002). All of the spatial tuning results discussed here 

are depicted graphically in Figure 19. 

To determine if there was a potential difference in the maximum possible 

amplitude from scaled gratings relative to checkerboards, 3 paired-samples t-tests were 

performed, each of which compared the scaled grating of maximum amplitude for that 

group to the checkerboard of maximum amplitude. In the case of the transient P50 

component, amplitudes from 3.943 cpd scaled gratings (M = 3.943, SD = 0.529) were 

compared to those from 0.80 deg checkerboards (M = 2.512, SD = 1.088), but no 

difference in amplitude was found (t(20) = -1.135, p = 0.270). Similarly, when N95 

amplitudes were compared between 2.488 cpd scaled gratings (M = 3.527, SD = 0.971) 

with those from 0.80 deg checkerboards (M = 3.895, SD = 1.395), there was no 

difference found for this component, either (t(20) = -1.066, p = 0.299). However, when 

amplitudes from steady-state responses were compared between 6.250 cpd scaled 

gratings (M = 0.890, SD = 0.271) and 0.80 deg checkerboards (M = 1.020, SD = 0.220), 

the checkerboards were found to yield a larger amplitude (t(20) = -2.452, p = 0.024). See 

Figure 18 for spatial tuning curves from both stimulus types for each of the two temporal 

frequencies. 

Since the scaled gratings possess some elements of gratings and some elements of 

checkerboards, paired-samples t-tests were conducted to evaluate the null hypothesis of 

that there is no amplitude difference between uniform 0.625 cpd gratings and 
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checkerboards with 0.80 deg check sizes, which are equivalent in spatial frequency. For 

transient stimuli, P50 amplitudes for the 0.625 cpd gratings (M = 2.389, SD = 0.821) and 

checkerboards with 0.80 deg checks (M = 2.512, SD = 1.088) were found to be equivalent 

(t(20) = -0.653, p = 0.521), as expected. This same result was found when N95 

amplitudes from 0.625 cpd gratings (M = 3.432, SD = 0.960) and 0.80 deg checkerboards 

(M = 3.895, SD = 1.395) were compared (t(20) = -1.844, p = 0.080). Similarly, no 

difference in amplitude was found between the steady-state 0.625 cpd grating (M = 1.110, 

SD = 0.348) and 0.8 deg checkerboard (M = 1.020, SD = 0.220; t(20) = 1.306, p < 0.206). 

These results ensure that none of the aforementioned effects were due to the stimulus 

being more or less similar to one of these two kinds of traditional PERG stimulus 

designs. 
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Figure 19. Spatial Tuning Curves for Checkerboard and Scaled Grating 

Stimuli. Amplitudes for transient (top row) and steady-state (bottom row) responses 
are plotted as a function of both check size and spatial frequency for uniform 
checkerboards (left column) and scaled gratings (right column). Also, amplitudes 
from uniform 0.625 cpd gratings are plotted on the checkerboard spatial tuning 
curves as a comparison to the 0.80 deg check size. The measure most appropriate for 
that stimulus type is listed as the top line of the x-axis, and the measure more 
appropriate for the other stimulus type is listed in parentheses below. Vertical bars 
represent standard error for that point. 
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Stimulus Type SS Amp P50 Amp N95 Amp 
 

Uniform 

Checkerboards 

   

 
0.340 deg 

 
0.957±0.063 

 
1.708±0.159 

 
3.621±0.214 

 
0.480 deg 

 
1.009±0.066 

 
2.004±0.116 

 
3.496±0.183 

 
0.800 deg 

 
1.020±0.048 

 
2.512±0.237 

 
3.894±0.304 

 
1.430 deg 

 
0.963±0.048 

 
2.186±0.162 

 
3.310±0.235 

 
2.380 deg 

 
0.902±0.039 

 
2.244±0.093 

 
3.191±0.141 

 
Uniform 

Grating 

   

 
0.625 cpd 

 
1.110±0.076 

 
2.389±0.179 

 
3.432±0.210 

 
Scaled Gratings    

 
0.394 cpd 

 
0.883±0.051 

 
2.241±0.115 

 
3.120±0.191 

 
0.625 cpd 

 
0.890±0.059 

 
2.085±0.128 

 
3.169±0.180 

 
0.991 cpd 

 
0.952±0.063 

 
2.252±0.116 

 
3.347±0.178 

 
1.57 cpd 

 
0.923±0.054 

 
2.386±0.151 

 
3.198±0.189 

 
2.488 cpd 

 
0.972±0.060 

 
2.211±0.114 

 
3.527±0.212 

 
3.943 cpd 

 
0.984±0.058 

 
2.387±0.138 

 
3.404±0.166 

 
6.250 cpd 

 
1.006±0.070 

 
2.197±0.113 

 
3.303±0.166 

 
9.906 cpd 

 
0.997±0.068 

 
2.105±0.137 

 
3.314±0.162 

 
 
  Table 4. Average Amplitudes for Experiment 2 Stimuli. The average amplitude 

and standard error (in µV) are reported above for each stimulus tested in 
Experiment 2. Note that for transient responses, P50 and N95 amplitudes are 
reported separately. (See Chapter II for details on how amplitude was measured for 
each temporal frequency category.) 
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Stimulus Type SS PS P50 IT N95 IT 
 

Uniform 

Checkerboards 

   

 
0.340 deg 

 
29.798±5.063 

 
49.810±2.048 

 
99.190±2.413 

 
0.480 deg 

 
15.826±9.888 

 
49.762±2.065 

 
98.333±2.212 

 
0.800 deg 

 
32.325±10.542 

 
49.143±1.925 

 
96.667±2.218 

 
1.430 deg 

 
27.876±9.886 

 
48.476±2.121 

 
95.429±2.373 

 
2.380 deg 

 
39.493±9.646 

 
46.952±1.884 

 
95.571±2.319 

 
Uniform 

Grating 

   

 
0.625 cpd 

 
85.791±14.899 

 
48.714±1.780 

 
97.857±2.267 

 
Scaled Gratings    

 
0.394 cpd 

 
114.291±11.193 

 
46.381±1.839 

 
96.619±2.227 

 
0.625 cpd 

 
104.141±14.462 

 
46.000±1.807 

 
95.476±1.891 

 
0.991 cpd 

 
99.815±14.989 

 
46.619±1.907 

 
96.810±2.001 

 
1.57 cpd 

 
95.757±15.769 

 
46.905±1.907 

 
97.714±2.337 

 
2.488 cpd 

 
97.315±13.679 

 
46.095±1.806 

 
96.762±2.003 

 
3.943 cpd 

 
90.720±16.418 

 
47.190±1.768 

 
96.619±1.724 

 
6.250 cpd 

 
99.769±11.173 

 
47.905±1.995 

 
96.952±2.305 

 
9.906 cpd 

 
75.763±17.585 

 
48.286±1.886 

 
94.476±1.908 

 

 

Table 5. Average Implicit Times and Phase Shifts for Experiment 2 Stimuli. 

The average implicit times (“IT,” in ms) and phase shifts (“PS,” in deg) are reported 
above with their respective standard errors for each stimulus tested in Experiment 2. 
(See Chapter II for details on how implicit time and phase shift were calculated.) 
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Summary. Similar to the result from previous literature (as discussed in the 

beginning of this chapter), varying check size across uniform checkerboards produced 

mixed results in regards to altering amplitude. For transient responses, only P50 

amplitude varied with check size, but N95 was not significantly affected. Like P50 

amplitudes, steady-state amplitudes were also influenced by check size. This may suggest 

that the origins of the P50 component and the steady-state response are more similar to 

each other than are the origins of the N95 component and the steady-state response. 

When scaled gratings were used instead of uniform checkerboards, transient responses 

showed no difference in amplitude as a function of center spatial frequency. Steady-state 

response amplitude did vary with center spatial frequency, but the small range of 

amplitudes from the scaled gratings (0.883 to 1.006 µV) makes it unlikely that such 

scaling is of much practical benefit to employ.  

It should be noted that while scaled gratings’ center spatial frequencies (and 

therefore the ranges of spatial frequencies within the stimuli) were varied, the scaling 

factor remained the same for each of these stimuli so as to reflect the approximate change 

of RGCf size. Therefore, it is possible that some other scaling factor may optimize the 

response amplitudes to a greater degree than what was seen here. It is also possible that 

the windowing effects, produced by the limitations of the stimulus field size, altered the 

efficacy of the scaling by altering the spatial frequency that fell within the outermost 

range of the stimulus and comprised its edges. Finally, the continuous changes in spatial 

frequency across the scaled grating stimuli may be producing fewer effects on amplitude 

due to the presence of numerous spatial frequencies being presented to each region of the 
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retina. If this is the case, future investigations may consider definitive regions of differing 

spatial frequency rather than a continuous change as a function of eccentricity. 

Neither transient nor steady-state response amplitudes differed between the 0.80 

deg checkerboard and its 0.625 cpd uniform grating counterpart, indicating that the scaled 

grating amplitudes are not likely to be more heavily influenced by the degree to which  

these stimuli resemble checkerboards or uniform gratings. Upon comparing the 

maximum amplitude of the checkerboard responses to that of the scaled grating 

responses, there was no difference found for P50 or N95, indicating that there is no 

advantage to using scaled gratings over the traditional checkerboards with respect to 

amplitude. When this same comparison was made within steady-state responses, the 

maximum amplitude of the uniform checkerboards exceeded that of the scaled gratings, 

yielding further evidence that the use of these scaled gratings do not optimize the 

response. Given these results, it does not appear that scaling stimulus elements for the 

rate of change of RGCf size has a substantial effect on the response amplitude, at least for 

the pattern and scaling factors used here. It may also be the case that RGC contributions 

present in the PERG response are more representative of a single pooled response rather 

than the summation of individual RGC responses. For further discussion of the possible 

implications and limitations mentioned in this summary, see Chapter VI. 

 

  



www.manaraa.com

 

83 
 

CHAPTER V 

EXPERIMENT 3: MODELING THE PATTERN ELECTRORETINOGRAM IN 

ADULTS WITH GLAUCOMA 

 

Experiment 3: Testing the Validity of Modeling the PERG in a Patient Population 

Hypothesis: In glaucoma patients, simulations of PERG responses from sums of 

flash increments and decrements will show amplitude decreases proportional to those 

seen in actual PERG responses from the same patients.  

Aim: Using the same modeling techniques as those from Experiment 1, validate 

the PERG simulation in a glaucoma patient population. 

Rationale: As has been previously shown, PERG response amplitude is typically 

lower in the glaucoma population relative to healthy subjects due to the decrease in RGC 

functionality (Bach & Hoffman, 2008; Rimmer & Katz, 1989). Since the simulated 

PERG detailed in Experiment 1 was designed to mimic the same retinal processes that 

create the PERG response, it was expected that the amplitude of the PERG simulation 

would be decreased in glaucoma patients by the same proportion as that of an actual 

PERG response relative to those responses from these patients’ healthy age-similar 

counterparts. The aim to test this hypothesis was therefore to record responses to PERG 

stimuli as well as flash increments and decrements in both glaucoma population and 

healthy controls so that PERG responses and simulations can be compared across these 

two groups. More specifically, the decrease in PERG response amplitude from glaucoma 
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patients (relative to healthy controls) was compared to the decrease seen between PERG 

simulations from the two groups. 

 Procedure. A subset of the procedures from Experiment 1 were replicated in a 

population of glaucoma patients at the University of Louisville Department of 

Ophthalmology and Visual Sciences. Criteria for patient selection included those with a 

diagnosis of primary open angle glaucoma or those who had been identified as glaucoma 

suspects. Participation was limited to those who did not exhibit any other conditions that 

had the potential to alter retinal thickness or quality of the image. Additionally, patients 

were required to have a history of reliable results from visual field testing (specifically, 

using the Humphrey Visual Field Analysis [HVA] 10-2, 24-2, OR 30-2) as well as an 

acuity of 20/40 or better in the eye from which the recordings were taken.  

All experimental procedures were the same as those described in Chapter II, with 

the exception of recording responses from checked flash stimuli. These procedures were 

also employed in a sample of healthy age-similar controls to account for any effects of 

advanced age that may be seen in this patient sample. These controls were recruited from 

the population of healthy patients who are visiting the ophthalmology clinic for other 

concerns or for routine eye exams. Like the glaucoma sample, patients who constituted 

this control group were required to have an acuity of 20/40 or better in the eye being 

tested and could not exhibit any other conditions that had the potential to alter retinal 

thickness or quality of the image. Further, control group participants could not have 

ocular hypertension or a family history of glaucoma. 

Patients recruited to participate in this study as those representative of the 

glaucomatous population were each categorized into one of four categories based on most 
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recent diagnosis: glaucoma suspect (GS), mild/early glaucoma, moderate glaucoma, or 

severe/advanced glaucoma. The resulting data consisted of that from 46 total participants, 

including 3 glaucoma suspects, 9 mild glaucoma patients, 10 moderate glaucoma 

patients, 15 severe glaucoma patients, and 9 control patients. Due to such a small number 

of glaucoma suspects participating, these individuals’ data had to be combined with that 

of another group for inferential analyses. Upon comparing amplitudes and implicit 

times/phase shifts of PERG and flash data from these patients, it was determined that 

their data more closely resembled that of the control group relative to that of the mild 

glaucoma group. By definition, these suspects had experienced no glaucomatous changes 

at the time of recording, so it seemed that it would still be appropriate to combine their 

data with that of the 9 control patients, yielding a collapsed control/GS group of 12 

individuals. These two collapsed categories will simply be referred to as the control 

group from this point forward. 

In total, there were 34 glaucoma patients (mild, moderate, and severe) who 

participated, with a mean age of 69.09±1.61 (range, 50-88) years. In regards to racial 

demographics, this sample consisted of 17 African-American participants, 15 Caucasian 

participants, 1 Arabic participant, and 1 American Indian participant. The 12 control 

patients yielded a mean age of 61.00±3.52 (range, 38-81) years, and consisted of 4 

African-American observers, 7 Caucasian observers, and 1 Asian-American observer. 

One eye was assessed for each patient, regardless of diagnostic category. 

 Analyses. Response amplitudes from PERG stimuli were compared between each 

category of glaucoma patients (mild, moderate, severe) and the control group for both 

transient and steady-state conditions via independent t-tests, so as to determine which 
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categories (if any) showed the expected decrease in response amplitude. Further, the 

same comparisons were also made for amplitudes of averaged best-fit simulations to 

determine if these simulations yielded the same pattern of results as did the PERG. 

(Averaged best-fit parameters were based on the group of interest; see Chapter III for 

methods of calculating these parameters.) Further, the amplitudes of both transient and 

steady-state b- and d-waves were also compared between the control group and each 

severity level of the glaucomatous group to determine if these amplitudes were the same 

between the two groups (as expected), or if they differed.  

 Since this particular experiment was largely focused on translational value of the 

PERG simulation, the only simulation of use would be an averaged set of parameters 

(which created in the averaged best-fit waveforms). Any trends seen in the averaged best-

fit amplitudes would be likely to appear in the individual best-fit amplitudes as well, due 

to the averaged best-fit parameters consisting of the means of individual best-fit 

parameters. Along the same lines, the averaged best-fit simulations were expected to 

yield approximately the same amplitudes as the individual best-fit simulations. However, 

if this was not the case, it could be possible to find different trends in the amplitudes of 

the individual best-fit simulations, which may change the conclusions made by the results 

of the model. Therefore, to determine if there was any difference in amplitude between 

the simulations from averaged best-fit parameters versus those from individual best-fit 

parameters, a paired-samples t-test was conducted for each measure of amplitude (i.e. 

P50, N95, and/or steady-state) that showed a difference between the control group and 

any group of glaucoma patients. 
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To more precisely determine the effect of disease severity on amplitudes of PERG 

responses and PERG simulations, amplitudes were correlated with the HVA 10-2, 24-2, 

or 30-2 mean deviation (MD) value for each patient. This value acted as a quantifiable 

measure of total visual field loss, and therefore could be used as a continuous measure of 

disease severity. To assess the relationship between disease progression and response 

amplitude, two sets of correlations were performed for each measure of amplitude that 

yielded a difference between controls and at least one category of glaucoma patients (as 

described in the previous paragraph). The first set of these correlations evaluated the 

relationship between the MD values and the PERG response amplitudes, while the 

second compared the MD values to the response amplitudes from the averaged best-fit 

simulations of the PERG. Evaluating these relationships in the case of both the actual 

PERG response and the PERG response from averaged best-fit parameters led to a clearer 

understanding of whether the results from the PERG mimicked those from previous 

literature, and whether the averaged best-fit simulation followed the same trends. 

Finally, the potential effect of age was assessed by comparing P50, N95, and 

steady-state PERG amplitudes that were recorded in young adults from Experiment 1, 

and older adults in the control group of Experiment 3. Previous literature has suggested 

that PERG amplitude decreases with age (Porciatti et al., 1989), so it was expected that 

the young adults who participated in Experiment 1 yielded higher-amplitude PERG 

responses than the older adults who comprised the control group in the present 

experiment. To assess this, three paired-sample t-tests were conducted to compare P50, 

N95, and steady-state amplitudes, respectively, between these two groups of participants. 
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Figure 20. PERG and 

Best-Fit Amplitudes by 

Category. P50, N95, and 
steady-state amplitudes (in 
microvolts) are shown here 
for each category. While 
little difference was seen 
between patients and 
controls for the P50 
component of transient 
waveforms, both the 
transient N95 amplitude 
and the steady-state 
amplitude tended to differ 
somewhat more between 
the controls and glaucoma 
patients. These patterns 
were highly similar 
between the amplitudes of 
the PERG and averaged 
best-fit simulations. 
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Results. Averaged amplitudes were recorded from all PERG responses, and can 

be found in the boxplots of Figure 20, with one boxplot per amplitude measurement (P50, 

N95, SS). As seen in these plots, the averaged PERG amplitude from controls was 

generally greater than that seen in glaucoma patients. Three t-tests assessed this 

relationship inferentially, with one test being used for each measure of amplitude (P50, 

N95, and SS). Holm’s procedure was used to maintain a family-wise error rate of 0.05 for 

the three comparisons within each measure of amplitude. In the case of the P50, 

amplitudes from controls (M = 1.342, SD = 0.791) were the same as those from patients 

with mild glaucoma (M = 1.113, SD = 1.104; t(19) = 0.556,  p = 0.585, adjusted α = 

0.025), moderate glaucoma (M = 1.414, SD = 1.287; t(20) = -0.160,  p = 0.874, α = 0.05), 

and severe glaucoma (M = 0.997, SD = 0.629; t(25) = 1.266,  p = 0.217, adjusted α = 

0.017). In other words, for P50 there was no significant difference between the control 

group or any of the glaucoma groups. 

Similarly, when N95 amplitudes were compared, the control population (M = 

2.201, SD = 1.182) yielded no difference in amplitude relative to individuals with either 

mild (M = 1.719, SD = 1.081, t(19) = 0.959, p = 0.350, adjusted α = 0.025), moderate 

glaucoma (M = 1.960, SD = 0.859, t(20) = 0.536, p = 0.598, α = 0.05), or severe 

glaucoma (M = 1.198, SD = 0.887; t(25) = 2.522, p = 0.018, adjusted α = 0.017). 

However, the boxplots show a trend for decreasing amplitude as a function of glaucoma 

severity, and if a single test had evaluated the difference in PERG amplitude between the 

control group and the group of patients with severe glaucoma, the amplitudes from the 

control group would have been seen as significantly larger due to the alpha value being 

0.05 rather than 0.017. This was not the case due to correcting for multiple comparisons,  
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Figure 21. Comparisons of Experiment 3 PERG Responses and Simulations. 

Samples of individual data are shown from three representative subjects, in response 
to both transient stimuli (left) and steady-state stimuli (right). One subject was from 
the control group (C04), one was from the group with moderate glaucoma (G20), and 
another was from the group with severe glaucoma (G03). The amount of time shift 
(ΔT), b-wave scaling (bamp), and d-wave scaling (damp) that was employed to create 
the best fit for each subject is shown in the bottom left of each graph. Negative ΔT 
values represent the b-wave beginning before the start of the d-wave, and positive 
values represent the b-wave starting after the beginning of the d-wave. 
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Control Mild 

Moderate Severe 

Figure 22. Comparisons of Experiment 3 Averaged Transient PERG Responses 

and Simulations. For each of the four participant groups of Experiment 3 (control, 
top left; mild, top right; moderate, bottom left; severe, bottom right), three waveforms 
are shown which represent the average of all of that group’s participants’ transient 
PERG responses (solid black line), individual best-fit simulations (solid red line), and 
averaged best-fit simulations (solid blue line). Each of these waveforms are shown on 
top of the 95% confidence interval for the PERG response (gray fill) to see how the 
averaged simulations compare to the variability of the PERG response. Note that the 
averages of the individual best fits (red) and the averaged best fits (blue) are often 
quite similar in each group, suggesting that it may be possible to find a set of common 
modeling parameters that successfully minimize the degree of error in the model 
across participants in each of the four categories shown here. 
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Control Mild 

Moderate Severe 

Figure 23. Comparisons of Experiment 3 Averaged Steady-State PERG 

Responses and Simulations. For each of the four participant groups of Experiment 3 
(control, top left; mild, top right; moderate, bottom left; severe, bottom right), three 
waveforms are shown which represent the average of all of that group’s participants’ 
steady-state PERG responses (solid black line), individual best-fit simulations (solid 
red line), and averaged best-fit simulations (solid blue line). Each of these waveforms 
are shown on top of the 95% confidence interval for the PERG response (gray fill) to 
see how the averaged simulations compare to the variability of the PERG response. 
Note that like the averaged transient responses and simulations shown in Figure 22 the 
averages of the individual best fits (red) and the averaged best fits (blue) are often 
quite similar in each group, suggesting that it may be possible to find a set of common 
modeling parameters that successfully minimize the degree of error in the model 
across participants in each of the four categories shown here. 
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however. Upon assessing intrasubject variability from the N95 averaged best-fit amplitude 

data from control subjects (σ2 = 0.689) and the patients with severe glaucoma (σ2 = 0.426) 

shown here, an effect size of f = 0.474 resulted for α = 0.05 and β = 0.95. Based on this effect 

size, a minimum of 94 total participants would be needed to show a significant difference 

between the N95 averaged best-fit amplitudes of these two groups. Therefore, although a 

large database may potentially show a significant difference between these two groups, it 

seems that the averaged best-fit simulation is not as sensitive of a measure as the PERG 

recording to detect N95 amplitude differences between these groups. 

In evaluating steady-state PERG amplitudes, those from the control group (M = 

0.573, SD = 0.305) were found to be no different relative to the group of mild (M = 

0.411, SD = 0.154; t(19) = 1.445, p = 0.165, adjusted α = 0.025) and moderate (M = 

0.505, SD = 0.195; t(20) = 0.600, p = 0.555, α = 0.05) glaucoma patients. However, when  

 Transient Steady-State 

Group TS  b % d % TS  b % d % 

Control 2±1.67 30±2.82 35±4.06 -6±2.08 25±0.00 30±2.20 

All Glaucoma 2±1.13 30±1.42 40±3.44 -4±1.19 25±0.49 30±1.32 

Mild 6±1.82 25±0.00 45±8.01 -4±2.29 25±1.67 30±2.89 

Moderate 0±2.11 30±3.88 45±8.23 -8±1.96 25±0.00 30±2.79 

Severe 2±1.81 30±1.90 35±2.89 -2±1.91 25±0.53 30±1.84 

Table 6. Averaged Best Fit Parameters by Category. Averaged time-shift (“TS”, 
in milliseconds), b-wave weightings, and d-wave weightings are reported for each 
category of participants, along with their respective standard errors. Note that there 
is little variation between averaged best-fit parameters for patients in the control 
group versus those with glaucoma. Similarly, there was little variation across 
averaged best-fit parameters as a function of severity.  
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steady-state PERG amplitudes were compared between the control group and those with 

severe glaucoma (M = 0.347, SD = 0.121), the amplitudes from the control sample were 

found to be larger relative to these patients in the advanced stage of this disease (t(25) = 

2.621, p = 0.015, adjusted α = 0.017). Based on these results, it seems that the steady-

state PERG was indeed found to be more sensitive to disease progression relative to the 

transient PERG. 

To determine if the averaged best-fit simulations would follow these same trends, 

three additional sets of three t-tests compared the amplitudes of simulations from the 

control group to each category of glaucoma patients. (To see the averaged best-fit 

parameters for each group, see Table 6.) Similar to the results from PERG amplitude 

comparisons, P50 showed no difference in amplitude between the control group (M = 

1.715, SD = 0.509) and those with mild (M = 1.199, SD = 0.761; t(19) = 1.862, p = 

0.078, adjusted α = 0.025) moderate (M = 1.668, SD = 0.683; t(20) = 0.184, p = 0.856, α 

= 0.05), or severe glaucoma (M = 1.362, SD = 0.337; t(18.297) = 2.067, p = 0.053, 

adjusted α = 0.017). The latter of these three tests showed that the assumption of 

homogeneity of variance between groups had been violated, as indicated by Levene’s test 

(F = 5.165, p = 0.032), so degrees of freedom were adjusted accordingly.  

In a similar manner, there were no differences in N95 amplitude found for these 

averaged best-fit simulations when the control group (M = 2.134, SD = 0.830) was 

compared to the group of patients with mild (M = 1.533, SD = 0.979; t(19) = 1.520, p = 

0.145, adjusted α = 0.025), moderate (M = 2.352, SD = 1.043; t(20) = -0.547, p = 0.590, 

α = 0.05), or severe glaucoma (M = 1.525, SD = 0.653; t(25) = 2.134, p = 0.043, adjusted 

α = 0.017). As in the case of the N95 PERG amplitudes, there would, in fact, be a 
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difference found between the control group and severe glaucoma patients if it were the 

only test evaluated, indicating that a similar trend may be taking place in these 

simulations. Upon assessing intrasubject variability from the N95 amplitude data from 

control subjects (σ2 = 1.397) and the patients with severe glaucoma (σ2 = 0.787) shown here, 

an effect size of f = 0.747 resulted for α = 0.05 and β = 0.95. Based on this effect size, a 

minimum of 40 total participants would be needed to show a significant difference between 

the N95 amplitudes of these two groups. 

The final set of three tests compared amplitudes from steady-state averaged best-

fit simulations from the control group to each severity level of glaucoma. Similar to the 

results from PERG amplitude comparisons, the amplitudes from averaged best-fit 

simulations from the control group (M = 0.455, SD = 0.158) did not differ from those in  

 

  

Waveform Control Mild Moderate Severe 

Transient 
    

b-wave 3.40±0.52 2.70±0.71 2.85±0.40 2.83±0.22 

d-wave 2.29±0.29 1.76±0.30 1.93±0.35 1.85±0.21 

Steady-state 
    

b-wave 2.13±0.21 1.67±0.19 1.77±0.14 1.61±0.13 

d-wave 1.06±0.16 1.02±0.12 0.98±0.14 1.03±0.11 

Table 7. Flash Amplitudes of Controls and Glaucoma Patients. Amplitude 
comparisons were made between the control group and each category of the glaucoma 
patients in this study (mild, moderate, severe), with transient and steady-state b- and d-
waves being assessed. Since Holm’s procedure was used in each set of t-tests (each 
row of this table), each p-value denotes which alpha value was used for comparison via 
the superscripted daggers. As seen in previous literature, no amplitude differences 
were found for any of these comparisons. 
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the mild (M = 0.421, SD = 0.144; t(19) = 0.506, p = 0.619, adjusted α = 0.025) or 

moderate (M = 0.438, SD = 0.151; t(20) = 0.249, p = 0.806, α = 0.05) glaucoma 

categories. However, unlike the findings from PERG comparisons, there was no 

difference in amplitude found between the simulations from the control group and those 

with severe glaucoma (M = 0.346, SD = 0.110; t(18.919) = 2.026, p = 0.057, adjusted α =  

0.017). The degrees of freedom employed in this test were adjusted from 25 to 18.919 

based on the results from Levene’s test, which indicated that the assumption of 

homogeneity of variance had been violated (F = 5.370, p = 0.029). All of the amplitudes 

from averaged best-fits can also be seen in the boxplots of Figure 20. 

Although previous literature has shown PERG amplitude differences between 

populations of control patients and glaucoma patients, it has generally shown that no 

significant differences in flash ERG amplitudes exist between these two groups (Bach & 

Hoffman, 2008). To determine if the current work reflected this idea, both b-wave and d-

wave amplitudes were compared between controls and glaucoma patients, with Holm’s 

procedure being employed within each temporal frequency. See Table 7 for a listing of 

these amplitudes by category (control, mild glaucoma, moderate glaucoma, and severe 

glaucoma) and their respective standard error values. 

For transient stimuli, no difference in amplitude was found between the b-waves 

from the control group (M = 3.399, SD = 1.810) and those from patients with mild (M = 

2.704, SD = 2.116; t(19) = 0.810, p = 0.428, adjusted α = 0.025), moderate (M = 2.852, 

SD = 1.277; t(20) = 0.801, p = 0.433, α = 0.05), or severe glaucoma (M = 2.834, SD = 

0.844; t(14.807) = 0.996, p = 0.335, adjusted α = 0.017). The latter of these three tests did 

not display homogeneity of variance according to the results of Levene’s test (F = 6.076, 
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p = 0.021), and therefore required that its degrees of freedom be adjusted. Transient d-

waves yielded the same pattern, with the control group (M = 1.060, SD = 0.569) yielding 

the same amplitude as that seen in mild (M = 1.756, SD = 0.895; t(19) = 1.275, p = 0.218, 

adjusted α = 0.017), moderate (M = 1.932, SD = 1.097; t(20) = 0.807, p = 0.429, α = .05),  

and severe glaucoma patients (M = 1.852, SD = 0.825; t(25) = 1.259, p = 0.220, adjusted 

α = 0.025). 

In the case of steady-state b-waves, amplitudes from control patients (M = 2.134, 

SD = 0.738) were also found to be the same as those from glaucoma patients with mild 

(M = 1.672, SD = 0.568; t(19) = 1.561, p = 0.135, adjusted α = 0.025), moderate (M = 

1.774, SD = 0.441; t(20) = 1.354, p = 0.191, α = 0.05), and severe forms of the disease (M 

= 1.615, SD = 0.496; t(25) = 2.183, p = 0.039, adjusted α = 0.017). Similarly, steady-

state d-wave amplitudes did not differ between the control group (M = 1.060, SD = 

0.569) and patients with mild (M = 1.025, SD = 0.352; t(19) = 0.163, p = 0.873, α = 

0.05), moderate (M = 0.984, SD = 0.442; t(20) = 0.343, p = 0.735, adjusted α = 0.017), or 

severe glaucoma (M = 1.028, SD = 0.437; t(25) = 0.168, p = 0.868, adjusted α = 0.025). 

These findings of no differences in flash ERG amplitude between the control group and 

glaucoma patients reinforces the idea purported in previous literature that flash ERG 

measurements are generally left unaffected in patients with glaucoma. 

Given that the modeling parameters for the averaged best-fit simulations were 

created by calculating the means of the modeling parameters for individual best-fit 

simulations, it was expected that the simulations produced by these two sets of 

parameters should be highly similar. More specifically, it was expected that these two 

types of simulations would yield simulations of equal amplitude. This assumption was of 
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particular importance for the components of the PERG for which there was a difference 

in amplitude found between the control group and any category of glaucoma patients. 

Since both N95 and steady-state amplitudes were found to differ between the control 

group and glaucoma patients, each was assessed in its own paired-samples t-test to 

determine if that measure differed between the individual best-fit simulations and the 

averaged best-fit simulations across all participants.  

When N95 amplitude was compared between the averaged best-fit simulations (M 

= 1.865, SD = 0.906) and the individual best-fit simulations (M = 1.805, SD = 0.929), no 

difference was found (t(45) = 0.849, p = 0.400). Similarly, no difference in steady-state 

amplitude was found between the averaged best-fit simulations (M = 0.409, SD = 0.142) 

and the individual best-fit simulations (M = 0.399, SD = 0.139; t(45) = 1.043, p = 0.303). 

These results confirm that the averaged set of modeling parameters are sufficient to 

achieve the same results as those seen from individualized parameters, and that 

individualized parameters are therefore unnecessary. Examples of individual data can be 

found in Figure 21, and examples of averaged waveforms can be found in Figures 22 and 

23. 

Since steady-state PERG amplitudes were found to differ between the control 

group and glaucoma patients, these amplitudes were correlated with MD values (as seen 

in Figure 24) to determine if there was a relationship between the amplitude in question 

and disease severity. Upon assessing this relationship between MD values (M = -7.386, 

SD = 8.020) and steady-state PERG amplitude (M = 0.411, SD = 0.164), amplitude was 

found to increase with MD values (r(33) = 0.386, p = 0.024), indicating that more severe 

cases of glaucoma yielded lower-amplitude responses. Since the transient N95 
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component also showed the potential for a difference in PERG amplitude between the 

control population and patients with glaucoma, MD values were also compared to N95 

amplitudes (M = 0.457, SD = 0.996), revealing that the more severe cases of glaucoma 

yielded lower-amplitude PERG responses in this case, as well (r(33) = 0.457, p = 0.007). 

To determine whether or not the simulated PERG showed these same trends, MD values 

were also correlated with these amplitude measurements from the averaged best-fit 

simulations. In the case of these simulations, however, neither N95 (M = 1.770, SD = 

0.925; r(33) = 0.287, p = 0.100) nor steady-state amplitudes (M = 0.393, SD = 0.135; 

r(33) = 0.192, p = 0.276) were correlated with MD values, indicating that this model is 

not likely to be useful to track disease progression.  

In addition to assessing the effects of glaucoma, the effects of age were also 

evaluated by comparing PERG amplitudes from the young adults who participated in 

Experiment 1 to the older adults who participated as control subjects in the present 

experiment. Within transient PERG responses, young adults (M = 2.828, SD = 0.986) 

yielded larger-amplitude responses than the older adults in the control group of 

Experiment 3 (M = 1.144, SD = 0.574; t(47) = 5.622, p < 0.001, adjusted α = 0.025). 

Similarly, the N95 component of transient PERG responses was also larger in the young 

adults (M = 4.684, SD = 1.632) relative to the older adults (M = 1.972, SD = 1.191; t(47) 

= 5.298, p < 0.001, α = 0.050). The same was also true for steady-state amplitudes, with 

those from the younger adults (M = 1.099, SD = 0.413) being greater than those from the 

older adults (M = 0.518, SD = 0.160; t(45.249) = 7.064, p < 0.001). Note that the degrees 

of freedom in the steady-state comparison were adjusted to account for a lack of  
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homogeneity of variance, as detected by Levene’s test for Equality of Variances (F(1,47) 

= 6.720, p = 0.013). 

Summary. As seen in previous literature (Bach & Hoffman, 2008), PERG 

amplitude tends to be lowered in glaucoma patients relative to control subjects, with 

steady-state amplitude being more sensitive to this difference than transient amplitude. In 

the present work, this same trend was generally supported, as steady-state PERGs were of 

Figure 24. N95 and Steady-state Amplitudes as a Function of MD Values. Both 
N95 and steady-state response amplitudes are plotted here for both the actual PERG 
and the averaged best-fit simulation. Each of these measures is shown as a function of 
mean deviation (MD) values, which can be thought of as a continuous measure of 
disease severity. Lower values indicate more severe cases of glaucoma. Correlations 
were conducted for each of these two amplitude measurements, as described in the text. 
Based on those results, MD values were significantly correlated with each of the PERG 
amplitudes measures, but not with either of the averaged best-fit amplitude measures. 
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lower amplitude in patients with severe glaucoma relative to the control population. 

Although there was no significant difference in transient PERG amplitude found between 

the control group and any of the categories of glaucoma patients due to the number of 

tests conducted, it appeared highly likely that N95 would have shown lowered amplitude 

for patients with severe glaucoma relative to the control group, had a greater number of 

participants been involved in the study. Mean deviation (MD) values were recorded for 

each of the glaucoma patients’ HVA 10-2, 24-2, or 30-2 assessments. These 

measurements described the average amount by which each patient’s visual field differed 

from that of the norm for his or her age, with larger MD values representing lower rates 

of loss of the visual field. Due to glaucoma severity largely being defined based on visual 

field loss, MD values were used as a continuous measure of disease progression. When 

N95 and steady-state PERG amplitudes were correlated with these MD values, both 

correlations successfully showed that amplitude increased with MD value, indicating that 

the trends of PERG amplitude in the current work followed those seen in previous 

literature. 

In addition to the PERG, averaged best-fit simulations of the PERG from flash 

ERG responses were created to determine if they could be employed in clinical practice 

as an alternative to the PERG itself. In one sense, these results mimicked those of the 

PERG amplitude comparisons in that they showed no difference when amplitudes from 

the control group were compared to those from mild or moderate glaucoma patients. 

However, it was found that neither N95 nor steady-state simulations showed a difference 

in amplitude between individuals in the control sample versus those in the group of 

patients with severe glaucoma. However, in the case of N95, the result was similar to that 
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of the PERG in that the difference would have been significant had only that one 

comparison been assessed (instead of including mild and moderate comparisons as well), 

so this result may have been different with more participants. Given that no amplitude 

difference was found for steady-state simulations, though, it appears that the simulation is 

not as sensitive to disease progression when compared to the actual PERG. This idea was 

further supported when no significant correlation was found between MD values and 

amplitudes from N95 and steady-state simulation. 

While PERG amplitude has previously been shown to differ between the control 

population and the glaucomatous population, flash ERG amplitude has been shown to be 

left largely unaffected by glaucoma (Bach & Hoffman, 2008). This trend was also found 

in the present work, as there were no amplitude differences found between the control 

group and any of the groups of patients with glaucoma for any of the flash ERG 

measures. This pattern of results was of particular importance in the present work, as the 

PERG simulations were created from flash ERG responses. Given that there were no 

differences in flash ERG amplitude between the controls and glaucoma patients, 

however, it can be implied that any differences in simulation amplitude that were found 

between the control group and the glaucoma group were not due to a confound of 

lowered flash ERG responses. 

Although it appears possible that the simulation can successfully model the PERG 

response, whether the simulation will be useful as a clinical tool that could successfully 

be substituted for the PERG remains inconclusive until a larger subject population can be 

tested. Based on the power analyses mentioned earlier in the Results section of this 

chapter, it appears that a rather large dataset of 94 or more people would be needed to 
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detect differences in N95 amplitude between healthy patients and patients with severe 

glaucoma based on the effect size found here. Therefore, while it seems that the exact 

model proposed here would not be highly useful in the clinical detection of glaucoma, 

given that no differences in amplitude were found between control subjects and those 

with mild or moderate glaucoma, it may still be useful for monitoring the progression of 

the disease when tested with a larger database as a means of refining the expected norm 

for the model in each level of severity. Based on the analysis of age effects between the 

amplitudes from younger adults of Experiment 1 and the older adults from the control 

group of the present experiment, it does appear to be necessary to account for age (as 

well as severity level of glaucoma) when creating such norms. 
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CHAPTER VI 

GENERAL DISCUSSION 

Experiment 1: Modeling the Contributions of Luminance and Local Spatial 

Contrast on PERG Response 

 One of the most critical questions addressed in this first experiment was whether 

or not it was possible to develop a predictive model that simulates the PERG waveform 

by using only ERG responses to flash stimuli. For both transient and steady-state 

conditions, the PERG was successfully modeled for each individual, accounting for the 

shape and morphology of the entire waveform rather than merely amplitude and implicit 

time measurements alone (see Figure 16 for examples of these fitted models). When the 

parameters of these best-fitting models were averaged across individuals, the averaged 

best-fit for transient models was the sum of the b-wave scaled down to 35% of its original 

amplitude and d-wave scaled down by 45%. Time-shifting the b-wave before summing 

with the d-wave was not found to be useful in this condition. In contrast, the parameters 

of the averaged best-fit for steady-state conditions showed that the b-wave should be 

scaled down to 25%, and the d-wave scaled down to 30%. Further, the b-wave should be 

shifted in time to begin 10 ms prior to the d-wave before summing the two waveforms.  

Although there are some differences in the precise scaling factors between the 

transient and steady-state best-fit parameters, the most substantial difference between 

these two models is the time-shifting required for steady state responses, but not for 

transient responses. Based on these results, we can infer that there are differences in the 
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ON and OFF response kinetics as a function of temporal frequency. More specifically, it 

appears that the ON and OFF responses respond at approximately the same rate when 

stimulated by the transient PERG, but respond at quite different rates (with the OFF 

response being delayed relative to the ON response) when stimulated by the steady-state 

PERG. Interestingly, these results pair well with the origins of the transient versus 

steady-state PERG response; according to Luo and Frishman (2011), the transient 

response seems to be comprised of approximately equal amounts of ON- and OFF-

pathway activity, whereas the steady-state response is comprised almost entirely of ON-

pathway activity. It may be the case that there is an interaction between the proportion of 

the PERG response that is driven by each pathway and the relative time point at which 

each pathway’s activity is processed within the PERG response. Since it is not currently 

understood exactly how these two pathways are combining in the PERG response at 

large, these best-fit model parameters may provide a glimpse into some of the ways that 

these pathways interact in the case of each of these two temporal frequency ranges. 

In addition to these differences between transient and steady-state simulations, 

there were also differences found between the P50 and N95 components of the transient 

simulations. The only comparison that yielded a difference in error for the P50 

component was that of the 100% uniform flash simulation versus the checked-flash 

simulation, with the uniform flash stimuli yielding higher degrees of error. This result 

implies that halving the amount of luminance present in the stimulation did lead to 

significantly lower rates of error for the P50 range of the simulation. However, when P50 

error was assessed for the last three comparisons (50% scaled uniform flash simulation 

and checked-flash simulation, averaged best fit and individual’s best fit, checked-flash 
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simulation and individual’s best fit), no difference was found in any of these cases. 

Therefore, it may be the case that P50 error is not affected by the spatial arrangement of 

the stimulus (since no difference was found between the error from 50% scaled uniform 

flash simulation and that from the checked-flash simulation) and is not reduced by 

customizing the parameters of the simulation (since the degree of error from the 

individual best-fit parameters was not lower than that of the averaged best-fit parameters 

or the checked-flash simulation). 

Despite being part of the same transient simulations, N95 error showed the exact 

opposite pattern of results. First, there was no difference between the N95 error of the 

100% uniform flash and that of the checked-flash simulation, but there was a greater 

degree of N95 error generated from the checked-flash simulation relative to that of the 

50% scaled uniform flash simulation. This discrepancy suggests that N95 may be more 

highly contingent upon stimulus field size rather than the total amount of luminance 

presented within that stimulus field. Further, a lower degree of N95 error was found for 

the individual best-fit simulations relative to the averaged best-fit simulations and the 

checked-flash simulations. Therefore, it appears that N95 error is generally lessened by 

customizing these best-fit parameters to each individual, mimicking the results of the 

holistic transient and steady-state simulations. 

All of the previous studies that have attempted to simulate the PERG from flash 

ERG responses have simply used uniform-flash stimuli, and then scaled down these 

responses to 50% of their original amplitudes before summing (Arden & Vaegan, 1983; 

Luo & Frishman, 2011; Simpson & Viswanathan, 2007; Viswanathan et al., 2000). The 

dogma behind this approach is that each uniform flash is the same size as entire PERG 
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stimulus, but the PERG stimulus is only presenting half of an increment flash and half of 

a decrement flash at any given time. Therefore, halving the amplitude of each uniform-

flash response is meant to yield b- and d-wave amplitudes that are representative of only 

half of the stimulation actually provided. When 50% uniform-flash d-waves were 

compared to checked-flash d-waves, there was no difference in amplitude found between 

the two groups, supporting this method that had been used in previous studies. However, 

when this same comparison was made amongst the b-waves from each of these response 

types, it was found that the b-wave amplitudes from the 50% uniform-flash responses 

were still greater than those from the checked-flash responses.  

Given that these patterns of results for both b- and d-wave held in both transient 

and steady-state recordings, it suggests there may be a non-linear function that 

characterizes the amplitude of the b-wave relative to the amount of stimulation present. It 

is also possible that the difference in spatial layout between the uniform-flash stimuli 

relative to the checked-flash stimuli is having some effect on b-wave amplitude that 

would not be present if luminance minimums and maximums were altered instead. Even 

if that is the case, the checked-flash stimuli mimic the precise arrangement of the PERG 

stimulus, and are therefore the most appropriate stimuli to use in evaluating this 

assumption accurately. Regardless of whether it is the difference in the amount of 

luminance present, the difference in spatial layout, or some combination of the two that is 

producing this discrepancy in b-wave amplitudes, it is important to acknowledge that the 

portion of the PERG response originating in ON-pathway activity is not adequately 

represented in the former method of modeling. Previous results must therefore be 

reconsidered, as it seems that these simulations used flash responses that were not true 
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representations of the amount of ON- and OFF-pathway activity generated by the 

increment and decrement halves of the PERG stimulus, respectively. Instead, these 

models unintentionally used slightly skewed proportions of these two types of pathway 

activity, with ON-pathway activity being weighted more heavily. 

Since these checked-flash stimuli produce responses that seem to more accurately 

represent the degree of activity from the ON- and OFF-pathways within the PERG 

response, the question remains as to why the checked-flash model was not as successful 

as the individualized best-fit models (as determined by a comparison of error). Given that 

the checked-flash stimulus was an exact representation of what the PERG stimulus would 

look like if every other check was a neutral gray that did not reverse, it is unlikely that the 

stimulus erroneously represented the localized increment and decrement responses in the 

context of the PERG. Therefore, the only explanation this leaves is that presenting the 

opposite-polarity checked flashes simultaneously (as in the case of an actual PERG 

stimulus) rather than independently (as in the case of this experiment) leads to a 

difference in the way that these increment and decrement responses are combined. It may 

be the case that after these responses combine simultaneously, another contrast-based 

gain mechanism is altering the final response that is seen in the PERG recording. If this is 

the case, such a mechanism may even differ between transient and steady-state 

conditions; several participants’ best fits for steady-state stimuli were the checked-flash 

stimulations, but this was not the case for any participants’ best fits under transient 

conditions. 
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Experiment 2: Optimizing the PERG Stimulus Based on a Model of Retinal 

Ganglion Cell Receptive Field Size 

 As detailed in Chapter I, spatial variation of the PERG stimulus has yielded many 

different effects on response amplitude across the studies that have assessed this variable. 

In addition to the novel scaled gratings, the present work utilized one of the most common 

stimulus choices that has been previously used to assess the potential role of spatial tuning 

in the PERG response: uniform checkerboards of varying check sizes. Interestingly, this 

experiment yielded an effect of check size for both the steady-state response and the P50 

component of the transient response, but not for the transient response’s N95 component. 

This is directly in contrast with several studies that have shown N95 to be the more likely 

component to exhibit spatial tuning relative to P50 (Berninger & Schuurmans, 1985; Korth 

& Rix, 1985; Wu et al., 1992). However, each of these studies only employed two to five 

participants total, while the present study evaluated spatial tuning curves of 21 participants, 

providing a more robust representation of the general population relative to these smaller 

sample sizes. Further, in each of these previous studies, the P50 component still displayed 

some degree of spatial tuning despite the effect of check size not being quite as drastic as 

that seen for N95.  

 When spatial tuning was found in previous literature, the function was typically 

bandpass in nature (Arden & Vaegan, 1983; Porciatti et al., 1989; Thompson & Drasdo, 

1989). This function was seen in the present work’s steady-state responses as well, and 

somewhat in the P50 component of the transient responses (though the P50 spatial tuning 

curve follows a pattern that is somewhat borderline between a low-pass function and a 

bandpass function). Since this pattern of results generally characterized both the steady-
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state and P50 amplitudes as a function of check size, the question of why these two 

responses follow roughly the same pattern naturally arises.  

As reviewed in Chapter I, macaque monkey data have shown that both the P50 

component and steady-state response are largely driven by luminance-based activity, while 

the N95 component seems to be exclusively driven by spiking activity (Luo & Frishman, 

2011). This is puzzling in light of the current results, since spatial tuning in the PERG is 

generally thought to reflect the properties of the ganglion cells known to drive the PERG 

response. However, it may be the case that differences in localized luminance responses 

are causing many of the effects seen from varying check size, given that the resulting PERG 

waveform is partially dependent upon luminance-based information for both the P50 

component and the steady-state response (Luo & Frishman, 2011). This idea is discussed 

further in a subsequent part of this section.  

In the case of the scaled gratings, there was an effect of center spatial frequency for 

steady-state responses, but not for transient responses. To determine whether uniform 

checkerboards or scaled gratings should be used to optimize the steady-state response, the 

stimulus from each category that elicited the highest-amplitude response of that category 

was identified, and these two response amplitudes were compared. Upon doing so, it was 

found that most optimized response from uniform checkerboards (0.80 deg checks) yielded 

a greater amplitude than that of the most optimized response from scaled gratings (6.250 

cpd). Therefore, although the goal of employing the scaled stimuli was to optimize the 

response beyond the capability of the uniform checkerboard, the scaled gratings could not 

produce as large of a response as could the uniform checkerboards for the one kind of 

PERG response in which spatial tuning was found.  
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Although these results indicate that the scaled gratings have failed in their original 

intent of optimizing the PERG response, the fact that this optimization did not occur in 

either temporal frequency category may provide further insight into the general nature of 

the PERG response. Given that these scaled gratings utilized a scaling factor that was based 

on the change in RGCf size as a function of eccentricity, it appears that scaling individual 

stimulus elements at the rate of RGCf size change is not the most ideal choice for a PERG 

stimulus. There are several possible reasons why this may be the case. First, it is possible 

that the scaling factor used was simply incorrect or, at least, not optimal.  

Given the anatomical basis, accountability of the displacement zone at the fovea, 

and success of the this scaling factor as applied to psychophysical paradigms (Watson, 

2014), it is unlikely that the scaling factor itself is erroneous enough to completely alter the 

results of the present work. It should be noted, however, that the original scaling factor 

differed slightly by meridian, but that those parameters had to be averaged to create the 

scaled gratings since the PERG stimulus must be symmetrical to maintain a constant net 

luminance. Within the eccentricity range used for the current stimulus field sizes, though, 

the differences across these meridians were quite minimal and are therefore unlikely to 

substantially change the amplitudes seen here. However, it should also be noted that the 

actual stimulus field sizes predicted by the Watson data were not equal to the sizes of the 

individual stimulus elements within the scaled gratings from this experiment. Instead, the 

rate of change of stimulus field size was the factor used to create these gratings. Although 

it is unlikely that stimulus elements should be the literal size of the receptive fields they 

stimulate the PERG stimulus, it is still possible that using only the rate at which these sizes 

changed acted a limitation in the current work. 
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If the factor used to scale the gratings in the present work correctly reflected the 

rate of change of RGCf size as intended, it may still be the case that the scaling factor 

would not optimize the stimulus response if it was not the most appropriate measure to use 

for scaling. Since the PERG is known to largely be driven by RGCs, and RGCs are known 

to exhibit spatial tuning, it has been assumed that the spatial tuning seen in the PERG is 

the result of collective spatial tuning across the RGCs that are being stimulated. While this 

may certainly be the case, it is also possible that other cellular activity reflected in the 

PERG response is either partially or entirely responsible for the response’s spatial tuning., 

and may also help to explain why there has been so much variability seen in past literature 

that aimed to assess the spatial tuning of the PERG. Even if all of the parameters that would 

affect RGC responses were controlled for across these studies, there are many other 

variables (i.e. luminance, precise temporal frequency, etc.) that may differentially affect 

other cells that contribute to the PERG response.  

As previously discussed, spatial tuning was found for steady-state responses and 

transient P50 responses when uniform checkerboards were viewed, further supporting this 

possibility. If these earlier processes are heavily influenced by an interaction between size 

of the local response and its location on the retina, then differences in net response 

amplitude could easily be misconstrued as originating in the more proximal layers of the 

retina since such activity drives the PERG response. Since previous mfERG results have 

shown amplitudes of flash responses to decrease with eccentricity regardless of scaling 

factor (Rodrigues et al., 2010), it is highly likely that uniform checkerboards would elicit 

an even more drastic decrease in local luminance response with eccentricity since no 

scaling factor is employed. Based on the responses in which spatial tuning was observed 
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for both uniform checkerboards and scaled gratings, it is possible that the stimuli yielding 

higher response amplitudes may be optimizing the photoreceptor and bipolar-cell 

responses rather than the ganglion-cell responses. To assess this, it may be beneficial for 

future work to evaluate the PERG amplitude in a very similar manner to that of the present 

study, but with a scaling factor that reflects receptive field density of photoreceptors and/or 

bipolar cells. 

 In addition to these possibilities, there is also the inherent limitation of edge 

effects both within the stimulus and at its perimeter. Although the traditional PERG 

stimulus will contain high-frequency edges throughout the pattern, the edges inside the 

scaled gratings used here are unusual in that they involve not only horizontal and vertical 

edges, but diagonal ones as well. Therefore, it may be possible that the edge effects 

produced at these additional orientations change the processing of the stimulus in 

unexpected ways that have not been accounted for in this study.  Unfortunately, edge 

effects are generally unavoidable in the case of the PERG response, as PERG standards 

demand square-wave spatial patterns to produce the largest possible potential (Bach et al., 

2013). To assess the influence of spatial scaling without such edge effects interfering, 

future work could employ PERG stimuli with sine or Gaussian-modulated edges rather 

than square-wave edges, even though the overall response amplitude will be lowered as a 

result. 

In the case of the outermost stimulus edges, there was a further limitation of 

windowing effects. Because these scaled gratings were based on a starting center spatial 

frequency from which all other spatial frequencies were determined as a function of 

eccentricity and the scaling factor used, the outermost ring of the scaled grating was 
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limited by the stimulus field size since that had to be equivalent to the size of the 

checkerboard stimulus. Therefore, the outermost ring of the stimulus was often limited in 

size relative to what it would need to be to appropriately fulfill the necessary spatial 

frequency for that ring based on the scaling factor. For this reason, the outermost ring 

was often a much higher spatial frequency than what was appropriate for that portion of 

the stimulus, and may have negatively influenced the size of the net response for that 

reason. 

Experiment 3:  

Testing the Validity of Modeling the PERG in a Patient Population 

 Although results from Experiment 1 showed that the PERG could generally be 

modeled from flash ERG responses in a group of young, healthy adults, it was still 

possible that these simulations only mimicked the morphology of the PERG and did not 

truly reflect the same retinal processes. To investigate whether these simulations were 

actually representative of the retinal processes seen in the PERG, Experiment 3 assessed 

the efficacy of these simulations in a glaucoma population. Since PERG amplitudes are 

known to decrease as severity of this disease increases (Bach & Hoffman, 2008), the 

simulation should be lower in amplitude relative to age-similar controls for the same 

cases in which the PERG amplitude is relatively lower. It was reasoned that if the 

simulation was able to produce the same trends as those seen in the PERG, then it was 

highly likely that the simulation was truly reflecting much of the same retinal activity as 

that which produced the PERG response. 

 Before this work could determine whether or not the simulation was deemed 

successful, the points at which PERG amplitude differed between glaucoma patients and 
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controls had to first be established. While no differences were found between PERG 

amplitudes from the control group versus those with mild or moderate glaucoma, some 

differences were seen between controls and those with severe glaucoma. For transient 

stimuli, there was no significant difference due to Holm’s procedure controlling for error 

across multiple tests. However, had the control group been compared to only the severe 

glaucoma patients, N95 amplitude would have been significantly lower in the severe 

glaucoma sample. Given that the somewhat low number of participants in each of these 

groups, it is possible that a larger sample size could have shown significant differences 

for this measure. For steady-state stimuli, PERG amplitudes from patients with severe 

glaucoma were significantly lower than their healthy counterparts even after Holm’s 

procedure controlled for error across multiple tests. This suggests, then, that the steady-

state PERG is a more sensitive measure of glaucomatous changes, as has been suggested 

in a previous review of similar literature (Bach & Hoffman, 2008). 

 Although the aforementioned tests did assess amplitude differences based on 

severity level, the full range of disease progression could not be accounted for since the 

discrete categorizations of mild, moderate, and severe were used. Therefore, to more fully 

understand the relationship between PERG amplitude and disease progression, a 

continuous measure of disease progression was required so that it may be correlated with 

these amplitudes. Since much of the basis for categorizing glaucoma severity centers 

around the amount of visual field loss that has resulted from the disease, it seemed 

necessary to choose a measure that reflected the degree of this loss. Mean deviation (MD) 

values were therefore selected as the continuous measure of glaucoma severity, as they 

represent the degree of overall visual field loss in that patient relative to healthy 
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individuals of the same age range, as determined by the HVA 10-2, 24-2, or 30-2 

assessment.  

An MD value of 0 represents a visual field that is statistically equivalent to a 

healthy individual that is of the same age as the patient. Negative values indicate greater 

visual field loss than the patient’s healthy counterparts, and positive values indicate a 

lower degree of visual field loss relative to that norm. Therefore, greater severity levels of 

glaucoma tend to align well with lower MD values. Since PERG amplitudes only differed 

between controls and glaucoma patients in the case of steady-state responses, and 

potentially in the case of transient N95 responses, these were the only two measures of 

amplitude that were correlated with MD values. Both N95 amplitude and steady-state 

amplitude were correlated with the MD values of the glaucoma patient sample, indicating 

that these measures of PERG amplitude decreased as disease severity increased. 

After assessing the patterns of PERG amplitude differences between the control 

group and the glaucoma patients, the amplitudes from averaged best-fit simulations were 

evaluated to determine if they yielded the same trends. Since these simulations were 

meant to reflect the true PERG response as accurately as possible, a different set of 

averaged best-fit parameters was used for each category (control, mild, moderate, 

severe), though the parameters did not vary greatly across these categories. When 

amplitudes from these simulations were compared between the control group and each 

category of glaucoma patients, no differences were found. Since these amplitudes did 

tend to decrease somewhat as severity increased (albeit not at levels of significance), it 

may once again be the case the differences would have been seen in a larger sample of 

patients. However, since neither N95 nor steady-state simulation amplitudes were 
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correlated with MD values, these simulations do not appear to be as sensitive to 

glaucomatous changes as compared to the actual PERG response.  

Since there were no differences found in flash amplitude between the control 

group and any category of glaucoma patients (as expected), it is unlikely that confounds 

in the flash ERG responses altered the success of the resulting simulations. Since no 

differences in these flash ERG amplitudes were found, this naturally leaves the question 

of why the simulations were not as successful as the actual PERG response in detecting 

amplitude differences between the control population and the glaucoma patients. The two 

most likely sources of differences in retinal processing between the PERG response and 

the simulation created from flash ERG responses are those of the spatial context of the 

PERG stimulus and the simultaneous presentation of increment and decrement stimuli.  

Based on the limited degree of success of the checked-flash simulations from 

Experiment 1 (Chapter II), however, it is unlikely that the lack of spatial context of the 

stimulus dramatically altered the results of the present experiment. Therefore, the most 

likely explanation behind the discrepancy between PERG response amplitude and 

simulation amplitude is that increment and decrement stimuli are presented 

simultaneously within the PERG stimulus, but separately in the case of flash ERG 

stimuli. If this simultaneous presentation is indeed necessary to evoke the retinal 

processes that are present in the PERG response, then it may be the case that there is a 

gain mechanism being employed that is not accounted for when responses elicited by 

separately-presented flash stimuli are combined.  

Since both this experiment and Experiment 1 only achieved limited success with 

modeling the PERG from flash ERG responses, future work may consider determining a 
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common set of modeling parameters across a large sample of healthy adults. It may be 

necessary, however, to segment the appropriate parameters by age range. By determining 

a definitive set of modeling parameters within only the control population, the model 

would solely be meant to represent the standard PERG. Therefore, when these parameters 

are applied to patients with glaucoma, they should produce a simulation that will show 

deviations from the standard PERG since the parameters would not be customized to this 

particular clinical group. Additionally, future work may also be able to improve this 

model by using flash ERG responses from stimuli presented in a Ganzfeld dome to PERG 

responses presented in a full-field context. A custom designed, large-field PERG stimulus 

display would need to be developed to make full-field PERG recordings possible. 

General Conclusions 

 Each of the three experiments discussed above intended to address assumptions 

that underlie the dogma of the PERG response. Although the specific implications of 

each experiment’s results are discussed in the preceding segments of this chapter, the 

origins of the various PERG components can be further clarified by assessing their 

similarities and differences across the results of these three experiments. In both 

Experiments 1 and 2, there were several substantial similarities between the steady-state 

PERG and the P50 component of the transient PERG. In the case of Experiment 1, 

checked-flash simulations yielded better fits than uniform-flash simulations, but yielded 

the same goodness of fit as uniform-flash simulations that had been scaled down to 50% 

of their original amplitudes. However, N95 did not show these same patterns. In the case 

of Experiment 2, spatial tuning was found in uniform checkerboards for P50 and steady-

state PERG amplitudes, but not in the case of N95. 
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 Based on the analyses of PERG origins conducted by Luo and Frishman (2011), a 

key similarity between P50 and steady-state PERG responses is that of a partial origin of 

earlier retinal processes that respond to changes in luminance. In contrast, N95 was 

shown to be almost entirely composed of later retinal processes that respond to changes 

in contrast. Therefore, it may be that these similarities seen between P50 and steady-state 

PERG responses in Experiments 1 and 2 are due to the portions of these responses that 

are luminance-based. If this is the case, then it implies that both the amount of luminance 

presented in the stimulus or accounted for in algebraic manipulations of the response (as 

in Experiment 1) and the spatial tuning that can be seen in response to uniform 

checkerboard stimuli of varying check sizes (as in Experiment 2) are primarily affecting 

the photoreceptor and bipolar cell contributions to the response.  

Since these cells are the primary contributors to luminance-based responses, then 

it follows that the aforementioned scenarios in which P50 and steady-state PERGs yield 

similar results are likely to be driven by these photoreceptor and bipolar cell layers rather 

than the ganglion cell layer. Therefore, although the holistic PERG response may largely 

be driven by ganglion cell activity, the roles of photoreceptors and/or bipolar cells should 

not be entirely discounted in assessing differences between individual response 

components, particularly in cases where an alternative to the traditional PERG is being 

employed. 

 Because these luminance-based influences have different effects on different 

components of the PERG, it may be possible to adapt future studies to account for which 

component or components are being assessed. For instance, future modeling may control 

for variables based on waveform component rather than just temporal frequency so that 
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differences in luminance- versus contrast-based contributions can be modeled differently. 

In the case of future studies to further optimize the PERG response through spatial 

scaling, it may be useful to scale the stimulus elements based on parameters based on 

changes in photoreceptor density rather than ganglion cell receptive fields, such as is 

done for multifocal ERG (mfERG) stimuli. Given that there is already a standard for the 

mfERG stimulus (Sutter & Tran, 1992), it may be possible to use the localized increment 

and decrement responses elicited from this stimulus to model the PERG that would be 

produced from splitting each hexagon within the array into a bipartite field. 

 This grouping of P50 and steady-state PERG responses did not seem to hold in 

PERG responses within glaucoma patients, however (as seen in Experiment 3). Instead, it 

seemed that N95 and steady-state amplitudes were more closely aligned in the trends they 

showed when amplitudes from the control group were compared to those from glaucoma 

patients. These results reaffirm the idea that the luminance-based components of the 

PERG response were not driving this amplitude difference, which should instead be 

related to the contrast-based components of the PERG response since it is caused by the 

dysfunction of the ganglion cell layer. This idea is further supported by the finding that 

while PERG amplitude was lowered for patients with glaucoma relative to the control 

group, flash ERG amplitude was unaffected by the disease.  

 In regards to the role of ON- versus OFF-pathway activity within the PERG, the 

weighting of the ON response appears to be much more influential to the resulting PERG 

response relative to the weighting of the OFF response based on the results of scaling 

these two responses in Experiment 1. This was found to be true in both transient and 

steady-state conditions. However, that same experiment showed that the response kinetics 
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of the ON and OFF pathways may differ when ON and OFF responses are being 

combined in the transient PERG response versus the steady-state PERG response. For 

both Experiments 1 and 3, all averaged best-fit parameters showed that goodness of fit 

increased when the b-wave started after the d-wave before summing in the case of the 

transient simulations, and before the d-wave in the case of the steady-state simulations. 

Since these trends were found for both of these experiments, it can be reasoned that this 

relationship between ON- and OFF-pathway response kinetics and temporal frequency is 

not drastically affected by glaucoma. 

These three experiments collectively show that the PERG does not represent a 

perfect cancellation of linear retinal activity in either healthy or glaucomatous states, and 

that its spatial tuning is not likely to be highly reflective of spatial tuning properties from 

the ganglion cell populations that drive its response. Despite the many recent 

advancements made in understanding the origins of the PERG, the present work points to 

several elements of the PERG response that have yet to be fully explained. For instance, 

it is still unclear what exactly prevents the PERG from being modeled perfectly with the 

combination of flash ERG responses, and the degree to which that perfected model may 

be clinically useful in the assessment of glaucoma patients. Further, it remains to be 

determined what exactly drives the spatial tuning of the PERG, and if the PERG stimulus 

can be optimized to that mechanism so as to produce a larger response. Although these 

questions remain largely unanswered, the most imperative message of the current work is 

that the current assumptions behind the PERG are likely to be far too simple and should 

therefore continue to be tested and questioned. 

  



www.manaraa.com

 

122 
 

REFERENCES 
 

Arden, G. B., & Vaegan. (1982). Differences between the focal and pattern 

electroretinogram in man. Journal of Physiology - London, 327(JUN), P67-P68.  

Arden, G. B., & Vaegan. (1983). Electroretinograms evoked in man by local uniform or 

patterned stimulation. The Journal of Physiology, 341(1), 85-104.  

Armington, J. C., & Brigell, M. (1981). Effects of stimulus location and pattern upon the 

visually evoked cortical potential and the electroretinogram. International Journal 

of Neuroscience, 14(3-4), 169-178.  

Armington, J. C., Corwin, T. R., & Marsetta, R. (1971). Simulatenously recorded retinal 

and cortical responses to patterned stimuli. Journal of the Optical Society of 

America, 61(11), 1514-1521.  

Armstrong, R. A. (2011). Visual symptoms in Parkinson's disease. Parkinsons Disease, 

2011. doi: 10.4061/2011/908306 

Bach, M., Brigell, M. G., Hawlina, M., Holder, G. E., Johnson, M. A., McCulloch, D. L., 

. . . Viswanathan, S. (2013). ISCEV standard for clinical pattern 

electroretinography (PERG): 2012 update. Doc Ophthalmol, 126(1), 1-7.  

Bach, M., & Hoffman, M. B. (2008). Update on the pattern electroretinogram in 

glaucoma. Optometry and Vision Science, 85(6), 386-395.  

Bach, M., & Holder, G. E. (1996). Check size tuning of the pattern electroretinogram: a 

reappraisal. Documenta Ophthalmologica, 92(3), 193. 

 



www.manaraa.com

 

123 
 

Bach, M., & Schumacher, M. (2002). The influence of ambient room lighting on the 

pattern electroretinogram (PERG). Documenta Ophthalmologica, 105(3), 281-

289.  

Baker, C. L., Hess, R. R., Olsen, B. T., & Zrenner, E. (1988). Current source density 

analysis of linear and non-linear components of the primate electroretinogram. J 

Physiol, 407, 155-176.  

Ben-Shlomo, G., Bach, M., & Orfi, R. (2007). Temporal and spatial frequencies interact 

in the contrast transfer function of the pattern electroretinogram. Vision Research, 

47(15), 1992-1999.  

Ben-Shlomo, G., Bakalash, S., Lambrou, G. N., Latour, E., Dawson, W. W., Schwartz, 

M., & Ofri, R. (2005). Pattern electroretinography in a rat model of ocular 

hypertension: functional evidence for early detection of inner retinal damage. 

Experimental Eye Research, 81(3), 340-349.  

Berardi, N., Domenici, L., Gravina, A., & Maffei, L. (1990). Pattern ERG in rats 

following section of the optic nerve. Experimental Brain Research, 79(3), 539-

546.  

Berninger, T., & Schuurmans, R. P. (1985). Spatial tuning of the pattern ERG across 

temporal frequency. Documenta Ophthalmologica: Advances in Ophthalmology, 

61(1), 17-25.  

Blondeau, J. L., Lafond, G., & Brunette, J. R. (1987). Pattern electroretinogram and optic 

nerve section in pigeons. Current Eye Research, 6(6), 747-756.  



www.manaraa.com

 

124 
 

Bode, S. F., Jehle, T., & Bach, M. (2011). Pattern electroretinogram in glaucoma 

suspects: new findings from a longitudinal study. Invest Ophthalmol Vis Sci, 

52(7), 4300-4306.  

Brannan, J. R., Bodis-Wollner, I., & Storch, R. L. (1992). Evidence for two distinct 

nonlinear components in the human pattern ERG. Vision Research, 32(1), 11-17.  

Brigell, M. G., Peachey, N. S., & Seiple, W. H. (1987). Pattern electroretinogram 

threshold does not show contrast adaptation. Invest Ophthalmol Vis Sci, 28(9), 

1614-1616.  

Bubl, E., Kern, E., Ebert, D., Bach, M., & Tebartz van Elst, L. (2010). Seeing gray when 

feeling blue? Depression can be measured in the eye of the diseased. Biological 

Psychiatry, 68(2), 205-208.  

Bush, R. A., & Sieving, P. A. (1994). A proximal retinal component in the primate 

photopic ERG a-wave. Investigative Ophthalmology & Visual Science, 35(2), 

635-645.  

Cellini, M., Toschi, P. G., Strobbe, E., Balducci, N., & Campos, E. C. (2012). Frequency 

doubling technology, optical coherence technology and pattern electroretinogram 

in ocular hypertension. BMC Ophthalmol, 12, 33.  

Chichilinsky, E. J., & Kalmar, R. S. (2002). Functional asymmetries in ON and OFF 

ganglion cells of primate retina. The Journal of Neuroscience, 22(7), 2737-2747.  

Chou, T. H., Park, K. K., Luo, X., & Porciatti, V. (2013). Retrograde signaling in the 

optic nerve is necessary for electrical responsiveness of retinal ganglion cells. 

Invest Ophthalmol Vis Sci, 54(2), 1236-1243.  



www.manaraa.com

 

125 
 

Chou, T. H., & Porciatti, V. (2012). The bioelectric field of the pattern electroretinogram 

in the mouse. Investigative Ophthalmology & Visual Science, 53(13), 8086-8092.  

Cook, C., & Foster, P. (2012). Epidemiology of glaucoma: what’s new? Canadian 

Journal of Ophthalmology, 47, 223-226.  

Curcio, C. A., & Allen, K. A. (1990). Topography of ganglion cells in human retina. CNE 

Journal of Comparative Neurology, 300(1), 5-25.  

Dawson, W. W., Trick, G. L., & Litzkow, C. A. (1979). Improved electrode for 

electroretinography. Investigative Ophthalmology & Visual Science, 18(9), 988-

991.  

Drasdo, N., Millican, C. L., Katholi, C. R., & Curcio, C. A. (2007). The length of Henle 

fibers in the human retina and a model of ganglion receptive field density in the 

visual field. Vision Research, 47(22), 2901-2911.  

Enroth-Cugell, C., & Robson, J. G. (1966). The contrast sensitivity of retinal ganglion 

cells of the cat. The Journal of Physiology, 187, 517-522.  

Evers, H. U., & Gouras, P. (1986). Three cone mechanisms in the primate 

electroretinogram: Two with, one without off-center bipolar responses. Vision 

Research, 26(2), 245-254.  

Falsini, B., Marangoni, D., Salgarello, T., Stifano, G., Montrone, L., Campagna, F., . . . 

Colotto, A. (2008). Structure-function relationship in ocular hypertension and 

glaucoma: interindividual and interocular analysis by OCT and pattern ERG. 

Graefe's Archive for Clinical and Experimental Ophthalmology, 246(8), 1153-

1162.  



www.manaraa.com

 

126 
 

Falsini, B., & Porciatti, V. (1996). The temporal frequency response function of pattern 

ERG and VEP: changes in optic neuritis. Electroencephalography and Clinical 

Neurophysiology, 100(5), 428-435.  

Fiorentini, A., Maffei, L., Pirchio, M., Spinelli, D., & Porciatti, V. (1981). The ERG in 

response to alternating gratings in patients with diseases of the peripheral visual 

pathway. Invest Ophthalmol & Vis Sci, 21(3), 490-493.  

Foster, P., Buhrmann, R., Quigley, H. A., & Johnson, G. J. (2002). 86(2), 238-242.  

Garcia-Martin, E., Rodriguez-Mena, D., Satue, M., Almarcegui, C., Dolz, I., Alarcia, R., . 

. . Pablo, L. E. (2014). Electrophysiology and optical coherence tomography to 

evaluate Parkinson disease severity. Invest Ophthalmol Vis Sci, 55(2), 696-705.  

Giuffre, I., Falsini, B., Gari, M. A., & Balestrazzi, E. (2013). Pattern electroretinogram 

assessment during ibopamine test in ocular hypertension. Eur J Ophthalmol, 

23(6), 819-822.  

Graham, S. I., Wong, V. A., Drance, S. M., & Mikelberg, F. S. (1994). Pattern 

electroretinograms from hemifields in normal subjects and patients with 

glaucoma. Invest Ophthlamol Vis Sci, 35(9), 3347-3356.  

Guy, J., Feuer, W. J., Porciatti, V., Schiffman, J., Abukhalil, F., Vandenbroucke, R., . . . 

Lam, B. L. (2014). Retinal ganglion cell dysfunction in asymptomatic G11778A: 

Leber hereditary optic neuropathy. Invest Ophthalmol Vis Sci, 55(2), 841-848.  

Harrison, J. M., O'Connor, P. S., Young, R. S., Kincaid, M., & Bentley, R. (1987). The 

pattern ERG in man following surgical resection of the optic nerve. Investigative 

Ophthalmology & Visual Science, 28(3), 492-499.  



www.manaraa.com

 

127 
 

Heine, M., & Meigen, T. (2004). The dependency of simultaneously recorded retinal and 

cortical potentials on temporal frequency. Documenta Ophthalmologica, 108(1), 

1-8.  

Hess, R. F., & Baker, C. L. (1984). Human pattern-evoked electroretinogram. Journal of 

Neurophysiology, 51(5), 939-951.  

Hood, D. C., & Birch, D. G. (1995). Phototransduction in human cones measured using 

the a-wave of the ERG. Vision Research, 35(20), 2801-2810.  

Jafarzadehpour, E., Radinmehr, F., Pakravan, M., Mirzajani, A., & Yazdani, S. (2013). 

Pattern electroretinography in glaucoma suspects and early primary open angle 

glaucoma. J Ophthalmic Vis Res, 8(3), 199-206.  

Janknecht, P., Wesendahl, T., Feltgen, N., Otto, T., & Bach, M. (2001). Steady-state 

electroretinograms and pattern electroretinograms in pigs. Graefe's Archive for 

Clinical and Experimental Ophthalmology, 239(2), 133-137.  

Junghardt, A., Wildberger, H., Robert, Y., & Torok, B. (1993). Pattern electroretinogram 

and visual evoked potential amplitudes are influenced by different stimulus field 

sizes and scotomata. Documenta Ophthalmologica: Advances in Ophthalmology, 

83(2), 139-149.  

Katsumi, O., Tetsuka, S., Mehta, M. C., Tetsuka, H., & Hirose, T. (1993). Effect of 

hemifield stimulation on simultaneous steady-state pattern reversal 

electroretinogram and visual evoked response. Ophthalmic Research, 25(2), 119-

127.  

Kirkham, T. H., & Coupland, S. G. (1983). Pattern ERGs and check size - absence of 

spatial-frequency tuning. Current Eye Research, 2(8), 511-521.  



www.manaraa.com

 

128 
 

Korth, M. (1983). Pattern-evoked responses and luminance-evoked responses in the 

human electroretinogram. The Journal of Physiology(337), 451-469.  

Korth, M., & Rix, R. (1984). Effect of stimulus intensity and contrast on the pattern ERG. 

Ophthalmic Research, 16(1-2), 60-66.  

Korth, M., & Rix, R. (1985). Changes in spatial selectivity of pattern-ERG components 

with stimulus contrast. Graefe's Archive for Clinical and Experimental 

Ophthalmology, 223(1), 23-28.  

Leguire, L. E., & Rogers, G. L. (1985). Pattern electroretinogram: use of noncorneal skin 

electrodes. Vision Research, 25(6), 867-870.  

Luo, X., & Frishman, L. J. (2011). Retinal pathway origins of the pattern 

electroretinogram (PERG). Investigative Ophthalmology and Visual Science, 

52(12), 8571-8584.  

Maffei, L., & Fiorentini, A. (1981). Electroretinographic responses to alternating gratings 

before and after section of the optic nerve. Science, 211(4485), 953-955.  

Marmor, M. F., Fulton, A. B., Holder, G. E., Miyake, Y., Brigell, M., & Bach, M. (2009). 

ISCEV Standard for full-field clinical electroretinography (2008 update). Doc 

Ophthalmol, 118, 69-77.  

McCulloch, D. L., Garcia-Filion, P., Fink, C., Chaplin, C. A., & Borchert, M. S. (2010). 

Clinical electrophysiology and visual outcome in optic nerve hypoplasia. The 

British Journal of Ophthalmology, 94(8), 1017-1023.  

McCulloch, D. L., Garcia-Filion, P., van Boemel, G. B., & Borchert, M. S. (2007). 

Retinal function in infants with optic nerve hypoplasia: electroretinograms to 

large patterns and photopic flash. Eye, 21(6), 712-720.  



www.manaraa.com

 

129 
 

Miura, G., Wang, M. H., Ivers, K. M., & Frishman, L. J. (2009). Retinal pathway origins 

of the pattern ERG of the mouse. Experimental Eye Research, 89(1), 49-62.  

Odom, J. V., Maida, T. M., & Dawson, W. W. (1982). Pattern evoked retinal response 

(PERR) in human: effects of spatial frequency, temporal frequency, luminance 

and defocus. Current Eye Research, 2(2), 1982-1983.  

Pangeni, G., Lammer, R., Tornow, R. P., Horn, F. K., & Kremers, J. (2012). On- and off-

response ERGs elicited by sawtooth stimuli in normal subjects and glaucoma 

patients. Documenta Ophthalmoligica, 124, 237-248.  

Peachey, N. S., & Seiple, W. H. (1987). Contrast sensitivity of the human pattern 

electroretinogram. Investigative Ophthalmology & Visual Science, 28(1), 151-

157.  

Poloschek, C. M., & Bach, M. (2009). The mfERG response topography with scaled 

stimuli: effect of the stretch factor. Doc Ophthalmol, 119, 51-58. doi: 

10.1007/s10633-009-9169-6 

Porciatti, V., Bosse, B., Parekh, P. K., Shif, O. A., Feuer, W. J., & Ventura, L. M. (2013). 

Adaptation of the steady-state PERG in early glaucoma. J Glaucoma.  

Porciatti, V., Falsini, B., Fadda, A., Neroni, M., Minnella, A., & Scalia, G. (1989). 

Changes in spatial tuning of the pattern electroretinogram with age. Metabolic, 

Pediatric, and Systemic Ophthalmology, 12(1-3), 74-75.  

Porciatti, V., Saleh, M., & Nagaraju, M. (2007). The pattern electroretinogram as a tool 

to monitor progressive retinal ganglion cell dysfunction in the DBA/2J mouse 

model of glaucoma. Invest Ophthalmol Vis Sci, 48(2), 745-751.  



www.manaraa.com

 

130 
 

Porciatti, V., & Sartucci, F. (1996). Retinal and cortical evoked responses to chromatic 

contrast stimuli. Brain, 119(3), 723-740.  

Porciatti, V., Sorokac, N., & Buchser, W. (2005). Habituation of retinal ganglion cell 

activity in response to steady state pattern visual stimuli in normal subjects. 

Investigative Ophthalmology & Visual Science, 46(4), 1296-1302.  

Porciatti, V., & Ventura, L. M. (2009). Physiologic significance of steady-state pattern 

electroretinogram losses in glaucoma: clues from simulation of abnormalities in 

normal subjects. Journal of Glaucoma, 18(7), 535-542.  

Preiser, D., Lagreze, W. A., Bach, M., & Poloschek, C. M. (2013). Photopic negative 

response versus pattern electroretinogram in early glaucoma. Invest Ophthalmol 

Vis Sci, 54(2), 1182-1191.  

Quigley, H. A., & Broman, A. T. (2006). The number of people with glaucoma 

worldwide in 2010. British Journal of Ophthlamology, 90, 262-267.  

Rimmer, S., & Katz, B. (1989). The pattern electroretinogram: technical aspects and 

clinical significance. Journal of Clinical Neurophysiology: Official Publication of 

the American Electroencephalographic Society, 6(1), 85-99.  

Robson, J. G., Saszik, S. M., Ahmed, J., & Frishman, L. J. (2003). Rod and cone 

contributions to the a-wave of the electroretinogram of the macaque. Journal of 

Physiology, 547(2), 509-530.  

Rodrigues, A. R., da Silva Filho, M., Silveira, L. C. L., & Kremers, J. (2010). Spatial 

distributions of on- and off-responses determined with the multifocal ERG. Doc 

Ophthalmol, 120, 145-158. doi: 10.1007/s10633-009-9205-6 



www.manaraa.com

 

131 
 

Rodriguez-Mena, D., Almarcegui, C., Dolz, I., Herrero, R., Bambo, M. P., Fernandez, J., 

. . . Garcia-Martin, E. (2013). Electropysiologic evaluation of the visual pathway 

in patients with multiple sclerosis. J Clin Neurophysiol, 30(4), 376-381.  

Siegel, M. J., Marx, M. S., Bodis-Wollner, I., & Podos, S. M. (1986). The effect of 

refractive error on pattern electroretinograms in primates. Current Eye Research, 

5(3), 183-187.  

Sieving, P. A., Murayama, K., & Naarendorp, F. (1994). Push-pull model of the primate 

photopic electroretinogram: A role for hyperpolarizing neurons in shaping the b-

wave. Visual Neuroscience, 11, 519-532.  

Simpson, M. C., & Viswanathan, S. (2007). Comparison of uniform field and pattern 

electroretinograms of humans. Journal of Modern Optics, 54(9), 1281-1288.  

Sokol, S., Jones, K., & Nadler, D. (1983). Comparison of the spatial response properties 

of the human retina and cortex as measured by simultaneously recorded pattern 

ERGs and VEPs. Vision Research, 23(7), 723-727.  

Stockton, R. A., & Slaughter, M. M. (1989). B-wave of the electroretinogram: A 

reflection of ON bipolar cell activity. The Journal of General Physiology, 93(1), 

101-122.  

Sutter, E. E., & Tran, D. (1992). The field topography of ERG components in man - I. 

The photopic luminance response. Vision Res, 32(3), 433 - 446.  

Tafreshi, A., Racette, L., Weinreb, R. N., Sample, P. A., Zangwill, L. M., Medeiros, F. 

A., & Bowd, C. (2010). Pattern electroretinogram and psychophysical tests of 

visual function for discriminating between healthy and glaucoma eyes. American 

Journal of Ophthalmology, 149(3), 488-495.  



www.manaraa.com

 

132 
 

Talla, V., Yang, C., Shaw, G., Porciatti, V., Koilkonda, R. D., & Guy, J. (2013). 

Noninvasive assessments of optic nerve neurodegeneration in transgenic mice 

with isolated optic neuritis. Invest Ophthalmol Vis Sci, 54(7), 4440-4450.  

Tetsuka, S., Katsumi, O., Mehta, M., Tetsuka, H., & Hirose, T. (1992). Effect of stimulus 

contrast on simultaneous steady-state pattern reversal electroretinogram and 

visual evoked response. Ophthalmic Res, 24(2), 110-118.  

Thompson, D., & Drasdo, N. (1989). The effect of stimulus contrast on the latency and 

amplitude of the pattern electroretinogram. Vision Research, 29(2), 309-313.  

Tobimatsu, S., Celesia, G. G., Cone, S., & Gujrati, M. (1989). Electroretinograms to 

checkerboard pattern reversal in cats: Physiological characteristics and effect of 

retrograde degeneration of ganglion cells. Electroencephalogr Ciln Neurophysiol, 

73(4), 341-352.  

Ueno, S., Kondo, M., Niwa, Y., Terasaki, H., & Miyake, Y. (2004). Luminance 

dependence of neural components that underlies the primate photopic 

electroretinogram. Investigative Ophthalmology & Visual Science, 45(3), 1033-

1040.  

Ueno, S., Kondo, M., Ueno, M., Miyata, K., Terasaki, H., & Miyake, Y. (2006). 

Contribution of retinal neurons to d-wave of primate photopic electroretinograms. 

Vision Research, 46, 658-664.  

Uva, M. G., Di Pietro, M., Longo, A., Lauretta, K., Reibaldi, M., & Reibaldi, A. (2013). 

Pattern ERG and RNFL thickness in hypertensive eyes with normal blue-yellow 

visual field. Graefes Arch Clin Exp Ophthalmol, 251(3), 839-845.  



www.manaraa.com

 

133 
 

Vaegan, Anderton, P. J., & Millar, T. J. (2000). Multifocal, pattern and full field 

electroretinograms in cats with unilateral optic nerve section. Documenta 

Ophthalmologica, 100, 207-229.  

Vaegan, & Arden, G. B. (1987). Effect of pattern luminance profile on the pattern ERG 

in man and pigeon. Vision Res, 27(6), 883-892.  

Ventura, L. M., Golubev, I., Feuer, W. J., & Porciatti, V. (2010). The PERG in diabetic 

glaucoma suspects with no evidence of retinopathy. J Glaucoma, 19(4), 243-247.  

Ventura, L. M., Golubev, I., Feuer, W. J., & Porciatti, V. (2013). Pattern 

electroretinogram progression in glaucoma suspects. J Glaucoma, 22(3), 219-225.  

Viswanathan, S., Frishman, L. J., & Robson, J. G. (2000). The uniform field and pattern 

ERG in macaques with experimental glaucoma: removal of spiking activity. 

Invest Ophthalmol Vis Sci, 41(9), 2797-2810.  

Viswanathan, S., Frishman, L. J., Robson, J. G., Harweth, R. S., & Smith, E. L. (1999). 

The photopic negative response of the macaque electroretinogram: reduction by 

experimental glaucoma. Investigative Ophthalmology & Visual Science, 40(6), 

1124-1136.  

Vukmanic, E., Godwin, K., Shi, P., Hughes, A., & DeMarco, P., Jr. (2014). Full-field 

electroretinogram response to increment and decrement stimuli. Doc Ophthalmol, 

129(2), 85-95. doi: 10.1007/s10633-014-9455-9 

Watson, A. B. (2014). A formula for human retinal ganglion cell receptive field density 

as a function of visual field location. Journal of Vision, 14(7), 1-17.  



www.manaraa.com

 

134 
 

Wu, S., Armington, J. C., & Reeves, A. (1992). Electroretinograms (ERGs) and visual-

evoked potentials (VEPs) elicited by pattern displacement. Visual Neuroscience, 

8(2), 127-136.  

Zapf, H. R., & Bach, M. (1999). The contrast characteristic of the pattern 

electroretinogram depends on temporal frequency. Graefes Arch Clin Exp 

Ophthalmol, 237(2), 93-99.  

 
  



www.manaraa.com

 

135 
 

CURRICULUM VITA 
 

Kate A. Godwin 
Department of Psychological and Brain Sciences 

University of Louisville 
Life Sciences Building, Room 317 

Louisville, KY 40292 
Phone: (502) 852-0790 

Email: kate.godwin@louisville.edu 
 

Education: 

 

2013 – Present    University of Louisville, Ph.D. Candidate 

       Major Area: Experimental Psychology 
      
2011 – 2013      M.S. Experimental Psychology 

       University of Louisville 
 
2007 - 2011          B.S. Psychology 
       Berry College 
 
Research Experience: 
 
University of Louisville, Department of Psychological and Brain Sciences, Louisville, 
KY 
 Graduate Research Assistant, July 2011 - Present 
 
Colorado State University, Psychology Department, Fort Collins, CO 

Research Experience for Undergraduates: Summer Program on Mind and Brain,  
June 2010 – August 2010 

 
Berry College, Psychology Department, Mt. Berry, GA 
 George Scholar Student Researcher, August 2009 - May 2011 
 
Teaching Experience: 

 
University of Louisville, Instructor 
 PSYC 331, Sensation and Perception, August 2015 – December 2015 
 
University of Louisville, Guest Lecturer for Dr. Melinda Leonard 
 PSYC 201, Honors Introduction to Psychology
 “Developing through the Lifespan,” February 11, 2014 
 
University of Louisville, Teaching Assistant 
 PSYC 302, Experimental Psychology, January 2014 – May 2014 

PSYC 302, Experimental Psychology, August 2013 – December 2013 



www.manaraa.com

 

136 
 

PSYC 201, Introduction to Psychology, January 2013 – May 2013 
 PSYC 301, Quantitative Methods in Psychology, August 2012 – December 2012 
 
University of Louisville, Graduate Teaching Assistant Academy, August 2013 - May 
2014 
 
Grants / Awards: 
 
University of Louisville, Graduate Student Council Spring Graduate Student Research 
Grant, March 2016 
 
University of Louisville, Arts and Sciences Graduate Student Union Spring Research 
Funds, February 2016 
 
University of Louisville, Intramural Research and Creative Activities Grant, June 2014 
 
University of Louisville, Arts and Sciences Graduate Student Union Spring Research 
Funds, February 2014 
 
University of Louisville, Graduate School Fellowship  
(2 years), July 2011 – June 2012, second year to be used July 2015 – June 2016 
 
National Science Foundation, Research Experience for Undergraduates,  
June 2010 – August 2010 
 
Berry College, George Scholar Research Grant, August 2009 – May 2011 
 
Berry College, Academic Scholarship, August 2007 – May 2011 

 

Professional Service: 
 
School of Interdisciplinary and Graduate Studies Student Ambassador, August 2014 – 
May 2015 
 
Student Representative for Department of Psychological and Brain Sciences, July 2014 – 
June 2015 
 
Founder of and Mentor for First-Year Mentoring Program in Experimental Psychology,  
July 2013 – June 2015 
 
Graduate Student Council Departmental Representative, July 2012 – June 2013 
 

Professional Memberships: 
 
Association for Research in Vision and Ophthalmology, February 2012 – Present 
 



www.manaraa.com

 

137 
 

Association for Psychological Science, January 2011 – January 2012 
 
Psi Chi, April 2009 - Present 
 
Publications and Papers: 
 
Godwin, K. & DeMarco, P. Simulating the human pattern electroretinogram using flash 
stimuli.  Manuscript in preparation. 

 
Vukmanic, E., Godwin, K., Shi, P., Hughes, A., & DeMarco, P., Jr. (2014). Full-field 
 electroretinogram response to increment and decrement stimuli. Documenta 
 Ophthalmologica, 129(2), 85-95. 
 

Poster Presentations: 

 

Godwin, K.A. & DeMarco, P.J. (2015, May). Simulating the human pattern 

electroretinogram  using flash stimuli. Poster presented at the 2015 Annual Meeting of 
the Association for  Research in Vision and Ophthalmology, Denver, CO. 
 

Godwin, K.A. & DeMarco, P.J. (2013, May). Change in flash electroretinogram 

morphology  from scotopic to photopic conditions. Poster presented at the 2013 Annual 
 Meeting of the  Association for Research in Vision and Ophthalmology, 
Seattle, WA. 
 

Godwin, K.A. & DeMarco, P.J. (2013, April). Effects of stimulus variation on the 

pattern  electroretinogram. Poster presented at the 23rd Annual Neuroscience Day 
hosted by the  Louisville Chapter of Society for Neuroscience, Louisville, KY. 
 
Shi, P., Godwin, K.A., & DeMarco, P.J. (2012, May). Temporal interactions between the 

b- wave and d-wave of the human electroretinogram. Poster presented at the 2012 
Annual  Meeting of the Association for Research in Vision and Ophthalmology, 
Fort Lauderdale,  FL. 
 

Godwin, K.A., Hughes, A., & Haney, M. (2011, May). Using spatial contrast sensitivity 

to assess form perception in autism. Poster presented at the 23rd Annual 
Convention of the Association for Psychological Sciences, Washington, D.C. 

 
Douda, N. D., Volbrecht, V. J., Godwin, K. A., Miller, A. D., & Nerger, J. L. (2010). 

Scotopically equated stimuli versus photopically equated stimuli in unique hue 

judgments. Poster presented at the 2010 Fall Vision Meeting, Rochester, NY. 
 


	University of Louisville
	ThinkIR: The University of Louisville's Institutional Repository
	8-2016

	Impact of luminance and spatial parameters on the generation of the human pattern electroretinogram.
	Kate A. Godwin
	Recommended Citation


	Copy of ProposalDraft1.docx

